Primitives of Sequential and Parallel Computation

Martti Forsell Ville Leppanen
Department of Computer Science Department of Computer Science
University of Joensuu, FINLAND University of Turku, FINLAND

Martti Penttonen
Department of Computer Science and Applied Mathematics
University of Kuopio, FINLAND

December 3, 1998

Abstract

This paper addresses the question: ’Are there some primitive concepts that can be
used to explain various aspects of computers and computations?’. We claim that many
concepts and design principles can be understood in terms of parallelizing/sequentializing.
In the case of physical resources, such as time or communication, these terms translate to
multiplezing/demultiplexing, while in the context of algorithmic control, we rather speak
of splitting/joining.

1 Introduction

Computations can be presented by directed flow graphs consisting of arcs and nodes, as in
Figure 1. The nodes represent elementary operations whereas arcs mean data transmis-
sion. The transfer of control is a special case of data transmission, namely transmission of
the message “you may now continue the computation”. Solving a problem means designing
a computation graph by using a set of elementary nodes (available in a computer or in an
abstract model of computation).

Occasionally, an output of a node is needed in several places. It is natural to assume in
the description of computations that the outputs of elementary computations are reusable.
Often, it is also seen desirable to divide, or split, the future processing of the output of
a node (or nodes) to several — more or less — independent parts. Respectively, by join
operation we refer to a situation, where several nodes direct their arcs to a single node.
The split operation is one side of the commonly used divide-and-conquer design method
and the join operation is the other side. We discuss algorithmic design methods more in
Section 2.

The implementation of such a description of the computation can be seen as a wave
that sweeps over all the nodes and arcs (see Figure 1). The implementation is determined
by specifying, which arcs the wave touches at each moment. If at one moment a wave is
at an incoming arc of a node, at the next moment it can be at the same arc, or at the
outgoing arc of the node. The only precondition of a legal implementation is that the
wave can proceed over a node only after it has arrived at all incoming arcs of the node,
which means that the operation at the node can be executed. There are a wide variety
of ways how the wave can sweep over the nodes and arcs. The largest number of nodes
between two successive waves expresses the degree of parallelism. If there is only one node

t-1 t t+1

Figure 1: A flow graph and time waves.

between two successive waves, the implementation is sequential. Figures 2 and 3 illustrate
two implementations of the flow graph of Figure 1.

Note that the number of nodes in the longest path of the flow graph determines the
manimum time of any implementation. By allocating a different processor for each node
of the flow graph, and assuming that each elementary operation can be executed in unit
time, we can execute the implementation in minimum time. Such an implementation
can be very wasteful, if processors are only waiting most of the time. The minimum
number of processors required is the number of nodes that the wave passes in one step
of computation. However, it would be advantageous that the nodes at both ends of an
arc refer to the same processor, because otherwise the arc would mean interprocessor
data transmission. Obviously, finding an efficient parallel implementation that uses the
resources of underlying physical parallel machine in a balanced manner, is a challenging
task. Later in Section 3, it will turn out that the methods to balance the use of resources
are various forms of multiplexing.

Observe that the description of computation itself is parallel by nature. Often a se-

0 1 2 3 4 5 6

Figure 2: A parallel implementation of flow graph with 3 processors in time 6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 3: A sequential implementation of a flow graph in time 13.

quential description of computation can be very cumbersome and odd. At worst, choosing
(somewhat arbitrarily) one of the possible sequential execution orders of a description can
make it difficult to comprehend the meaning of the computation. The sequential program-
ming can also be criticized of hiding parallelism found in the problem from the compiler
since parallelism is a resource which can lead to efficiency, even in sequential execution
[13, 19].

What objectives should be set for the design of algorithms and programs? Let us
assume that producing correct solutions is not the problem, but rather we are concerned
about the “efficiency” of solutions. An objective can be to find a graph that has minimal
number of nodes, i.e. minimal work). Another objective could be to minimize the length
of the longest path in the graph, i.e. the fastest parallel algorithm, or to minimize the
length of the longest path while keeping the number of nodes close to the minimun, i.e.
work-optimal parallel algorithm.

Unfortunately, the optimization of the programs cannot be based solely — perhaps,
not even mostly — on the of the above objectives. Often the knowledge about the imple-
mentation stage has a great influence on the design — for example, the number of nodes
of certain type should be minimized, or the arcs should be drawn so that the locality
of communication can be maximized. Moreover, programming is a creative work whose

success with respect to the goals depends on the skills of the programmer as well as on
the properties of the programming language used to express solutions.

The rest of this paper follows the scheme of Table 1. First we study concepts and goals
(in terms of our primitives) related to the design of descriptions of computations in Section
2. In Section 3. we do a similar study concerning the implementation of the descriptions.
In essence, Section 3 discusses ways of balancing the use of available resources in the
execution of algorithms. Section 4 continues in the same spirit, but now the subject
of study are various low level components (which computers are made of). We present
conclusions in Section 5.

Algorithm Architecture Hardware
Problem inventing the | mapping the | structure of phys-
algorithm computation and | ical components
communication in | of computer
computer
Goals minimize time or | efficient use of | efficient wuse of
work or time and | resources components
work
Means split / join multiplex / de- | multiplex / de-
multiplex multiplex
Implementation | programming or | architectural processors, mem-
computing mod- | models ories, and commu-
els nication devices

Table 1: Schematic view of the studied subjects.

2 Designing algorithms

In order to successfully solve algorithmic problems, it is essential that they can be solved at
right abstraction level, close enough to the concepts of the problem. Unless the problem is
more or less trivial, it is not advisable to write the algorithm directly for a certain parallel
or sequential computer, or even for a certain programming language. Low level technical
details can prevent from seeing the high level complexities. A further advantage of high
level design is the portability of the algorithm to different systems. The algorithm should,
however, be ultimately efliciently executable in the target architecture. In this section,
we study what role parallelizing / sequentializing plays in algorithm design.

2.1 Algorithms as flow graphs

To keep the presentation simple, we choose flow graphs as the model for presenting al-
gorithms. In the early phases of program design the nodes do not correspond to atomic
execution elements directly executable in a computer. Instead, they are rather like “black
boxes” or “molecules” or “modules” that implement a subalgorithm of suitable size. In
top-down design methodology, the challenge of algorithm designer is to identify (or in-
vent) useful modules. This kind of modularity makes designing easier and promotes the

reusability of modules (eventually, program code). Also the arcs need not correspond to
moving elementary data but, in a way, they can be seen to have some thickness.

What is essential, the description of computation can be seen to consist of splitting
and joining of algorithmic modules as described in the previous section. Obtaining exact
descriptions of computations requires implementation of the black boxes, i.e., refinement
of them to submodules. This refinement process is studied via algorithmic techniques in
Section 2.2.

During the refinement process one should not invent entirely fancy black boxes, since
the goal of design process is to reduce the abstract description to use only certain kind
of (simple) nodes and connections between nodes. Guidelines for the target constructions
are given by a programming model (associated to some programming language) — or more
generally by a computational model.

2.2 Design techniques

Traditionally algorithms have been designed to be sequential. However, we would like to
see them written in parallel (as in [13, 19]). One reason for this is seen in Figures 1 and 3.
In sequential representation extra effort is needed in fixing the order of execution, while
parallel representation focuses at the logical structure of the algorithm only. Furthermore,
a parallel algorithm can be automatically sequentialized. Hence, parallelism is an extra
resource that allows for the use of multiple processing units, when such a computer is
available. As an example, we consider a couple of design techniques from the point of
view of split and join.

Perhaps the best-known algorithm design technique is the dwide—and-conquer tech-
nique. The problem is split in two or more, more or less, independent subproblems, which
are solved more or less independently, and the solutions of the subproblems are joined as
the solution of the whole problem. Figure 4 illustrates, how the maximum of an array
is computed by divide and conquer technique. Note that Figure 4 can be implemented
parallelly or sequentially as in Figures 2 and 3.

|nf|rst
split
Ilst in of two
axima
in second

Figure 4: Computing maximum with binary divide-and—conquer.

For greater speedup, parallelization can be increased. In Figure 5, the n input keys
are divided in \/n segments of \/n keys, their maxima are found recursively, and finally,
the maximum of all maxima is determined by direct comparisons. The algorithm can be
executed sequentially in time O(n). If n (CRCW PRAM) processors are available, time
O(loglogn) is achieved [15], which is seen by the recurrence T(n) = T'(y/n) + O(1).

@ max test if
inlst maxlis
part max

split
listinr
parts

test if
maxr is
max

R &

4 M
(b)
—
o J
Figure b: (a) Maximum with y/n = r— divide-and—conquer.

(b) Subalgorithm for maximum testing.

A recursive algorithin, such as the recursive maximum algorithm in Figure 4, often
leads to recursive calls of fine granularity. It is reasonable to cut the recursion when the
problem size decreases below a threshold, and use another algorithm for small problems. In
Figure 6 on the top the maximum is computed by a recursive algorithm (in parallel), while
the boxes are small problems solved by another algorithm (sequentially). The blocking
can be used top-down or bottom-up, applying blocks at the end or at the beginning. A
reason for using such hybrid algorithms is to gain work-optimality. By simple divide-and-
conquer the maximum of » numbers can be computed with n/2 processors in log n levels
of recursion. If blocks of size log n are calculated sequentially in log n time with one
processor, the n/log n subresults can be calculated in log n time with n/log n processors,
leading to a work-optimal algorithm running in log n time. If splitting and joining in the
target architecture are costly, it may be worthwhile to start the sequential phase a little
earlier than by pure algorithmic grounds.

In the above example, the degree of divide-and-conquer is two whereas the maxi-
mum finding algorithm uses degree \/n. In a way, the blocking technique can be seen to
utilize the divide-and-conquer technique with degree 1 (sequentialization). The divide-
and-conquer technique can be applied with wide variety degrees for dividing. The problem
size n can act as the degree (fully parallel problems), and even using e.g. the degree n?
has applications (sorting in constant time on SUM CRCW PRAM). Moreover, some al-
gorithms may divide in numerous stages, where the algorithmic principle may or may
not change from stage to stage, and the degree of parallelism may increase or decrease
from stage to stage. In general, the divide-and-conquer provides a very flexible method
to design the calculation while controlling the width and depth of calculations and even

grouping subsolutions in a desired way.

19 1) 3 5 G S

Figure 6: Hybrid algorithm: parallel recursion and sequential blocks.

What do algorithmic techniques mean in terms of exact descriptions of computations?
Besides the refinement aspect, the idea of algorithmic techniques is to define a structure
(a pattern) of nodes and arcs. Often such a structure is large and homogeneous, though
the description of the technique is simple and compact. Since our basic primitives of de-
scriptions of computations are split and join, it should be no surprise that basic techniques
utilize splitting and joining in somehow repeating manner. It is tempting to claim that
most of the algorithmic techniques are forms of the classical divide-and-conquer technique,
where the variation comes from the degree and stages of splitting and joining.

3 Execution of algorithms in computers

When an algorithm is executed, it should run efficiently in the (parallel) computer at
hand. It means that all parts of the computer are used most of the time and they are
used meaningfully. In this section we focus on mapping the computation into the computer
in such a way, that the computer is used efficiently.

We see algorithm design as defining the output data in terms of input data and the
operations of the computational model. We focus at the dependency relations of data and
operations and implicitly assume that the data is immediately available everywhere and
in all times as soon as it has been defined as the result of an operation.

Algorithm, when expressed in form of a flow graph, does not explicitly determine
in which order the operations are executed. The programmer, who knows how many
processors his computer has, may wish to express that some parts of the program should
be executed in parallel. We assume that the programming language has some facilities to
express the degree of parallelisin.

In our opinion, the algorithm designer and the programier should concentrate at the
logical dependencies of the problemn and say as little as possible about the use of computer
resources. There are two reasons for this. First, algorithm design and programming are
difficult enough tasks and the human genius should be saved for the essential. Second, as
soon as the theory of parallel computation is developed enough, the machine can optimize
the use of resources much more efficiently than the programmer. Unfortunately, the
parallel computers and their compilers are not yet at a satisfactory level and programmers
have to play the role of the compiler.

3.1 Conditions of the efficient use of resources

The condition of efficient implementation of an algorithm is that right data is at right
place at right moment. If data arrives too late, processing power is wasted for waiting.
If data comes too early, it must be stored somewhere, which requires extra effort and
storage. If data is at wrong place, moving it takes time and requires communication
capacity. Therefore, mapping the computation in the computer is of primary importance.

For the execution of the algorithm, each processing node of the algorithm must be
allocated a processor or a number of processors for some period of time. This node map-
ping implies mapping of arcs to interprocessor communication. Also, it may be necessary
to allocate some storage for arcs, because the processor mapped for the target node may
not be available at the moment, when data corresponding to the arc arrives. Therefore,
the mapping must meet the following constraints:

¢ Processors must be multiplexed in space (i.e. have a sufficient number of processors)
or in time (i.e. share the time of a processor between many processes or threads) so
that each processing node of the flow graph is allocated physical computing resource.

e Communication links corresponding to the arcs in the flow graph must be multi-
plexed in space (to increase “bandwidth”) for immediate availability at the target
node, or multiplexed in time (i.e. serialize the communication).

e When multiplexing of processors in time is used (i.e. always), arcs of the flow graph
are implemented as a communication link from source node to memory, and another
communication link from memory to target node. Memories can be considered as
processors that are only capable of receiving, keeping, and sending data.

When implementing a description of computation (defined implicitly by a program
and its data), we are forced to operate under the physical limitations (or properties) of
the underlying machine. Since the descriptions of computations do not need to obey
these restrictions, we must somehow multiplez with respect to time the usage of limited
machine resources. On the other hand, the parallelism in the description of computations
may suggest that it would be wise to multiplezr some components in space — e.g., to
have more processors or to widen the communication links or to increase the length of
(arithmetic) pipelines. This implementation problem can also be seen as a problem of
designing machines with efficient multiplexing properties.

3.2 Controlling the use of resources

The big problem is, how should the flow graph of the algorithm be mapped on the com-
puter so that the computation is fast and efficient. It depends on the mapping of nodes,
how close to the optimal work, time, or work X time one gets. The degree of parallelisin
can be controlled by the

for processor_set pardo subcomputation

statement.

Mapping the processing nodes implies communication of data. It would not be a prob-
lem, if there were a shared memory, where all data is uniformly accessible. At current
level of technology, large and fast shared memories do not physically exist. Therefore, one
has to assume that the physical memory is distributed. It is obvious that interprocessor
communication is more costly than retrieving data from local memory, which is the case
when two successive nodes of the algorithin are mapped to the same processor. Unfortu-
nately, there is no general method to maximize the locality in a computation, and finding
a good mapping case by case is painful.

A general solution for the mapping problem, if no better strategy is known, is to map
the processing nodes to the processors and data to the memory at random, and solve

the general communication problem (i.e. any processor to any processor) by an efficient
routing algorithm. Clearly, randomized memory mapping is not local, and therefore it
implies the memory latency problem, i.e. getting data takes time. Randomized mem-
ory mapping alone would be inefficient due to latency, but with so—called slackness [17],
execution of algorithms can still be made work—optimal. When slackness is used, each
physical processor works for a number of independent nodes of the algorithm. Even if the
communication cannot be made fast enough by multiplexing the communication link in
space, execution can be made work-optimal by multiplexing the processor in time. This
technique is used to simulate the abstract PRAM (Parallel Random Access Machine) on
distributed memory machines [5, 8, 10, 11, 14, 17].

3.3 Directions in parallel computing

In each approach to parallelism something is assumed about the multiplexing level of the
components of the underlying machine. Similarly, something is assumed about the mul-
tiplexing properties of the programs to be executed. Thus, bottlenecks can be identified
and solutions to the observed problems can be suggested. In the following, we make a
quick tour over some approaches to parallelism and attempt to understand them in terms
of multiplexing / demultiplexing.

3.3.1 Shared memory abstraction on distributed memory

Consider implementing a shared memory abstraction on a distributed memory machine.
Hashing means mapping the shared memory locations to the (sequential) memory modules
of the distributed memory machine. The objective of hashing is to distribute the memory
references made by the P processing units in a given time period as evenly as possible. At
best, the time multiplexing level of any memory module is required to be only ~ 1/P’th
of the time multiplexing level of the shared memory. Clearly, the hashing technique is an
algorithmic attempt to trade time multiplexing to space multiplexing.

As was explained, work-optimal implementation of the PRAM model is based on
parallel slackness, hashing and a high-bandwidth routing machinery. Slackness is property
of parallel programs at the implementation stage. If p processors are used to implement
a description of computation having width s x p (at some point), the program is said to
have slackness s (at that point of the program). The slackness represents the fraction of
width that must and can be easily multiplexed in time. Another view is that s virtual
PRAM processors are demultiplexed to a single physical processor.

The idea in hiding latency ¢ (measured in unit steps) with slackness s is roughly that
the implementation of shared memory accesses is pipelined (multiplexed in time) and
routing machinery has bandwidth and capacity to move s X p requests to their targets
and back in time O(s). This requires ability to move (¢ x p) packets at each step. This
routing capacity is achieved by multiplexing routing machinery nodes and connections in
space while preserving latency /.

Rather than attempting to adapt to the properties of some specific parallel machine,
the PRAM approach sets various multiplexing requirements for the PRAM programs, pro-
cessors, memory modules, connections, and routing machinery. Requirements concerning
routing machinery and memory modules (normalized with respect to the performance
of current processors) are troublesome at current level of technology but not hopeless:
experimental implementation exists [1, 4].

3.3.2 BSP and LogP approaches
The BSP |

of the processors. For example, the BSP identifies latency ¢ and parameters h and hg —
the routing machinery can realize any h-relation (where h > hg) in time gh with high
probability. An h-relation is a routing problem, where each processor is the sender and
receiver of (at most) h messages.

The idea is that the identified properties are exposed to the programmer as parame-
ters, which enable to design computations that can be implemented efliciently using the
available time multiplexing properties. Thus, the programmer’s burden is increased by
forwarding him at least partially the responsibility of finding a successful solution to the
mapping problem!

3.3.3 Data-parallelism

The basic idea in data-parallel computing is to express parallelism through parallel vari-
ables (vectors, matrices) instead of parallel control streams. Homogeneous structures
are run through a homogeneous processing set (processors, vector processors, arithmetic
pipelines). Thus, high space multiplexing of several computing units is often assumed.
Data-parallel programming is, perhaps, best seen as an automatically parallelizable
extension of sequential programming. Typical data-parallel languages (Fortran 90, HPF,
NESL) do not even have the concept of processors or processes. The data-parallel ap-
proach leans on clever compiling techniques and data-parallel language constructs, which
enable implementation to advance existing space multiplexing properties efficiently.
Often data-parallelism is applied in context, where processors are fast and have highly
sophisticated arithmetic pipelines but whose inter-processor communication mechanism
is rather slow (low time multiplexing properties). Then the main problem of a compiler
is to locate data on the processors so that the locality of references is thus maximized.

3.3.4 Dataflow computing

In dataflow computing [9, 18], the idea is to see the whole computation as a directed
graph, where nodes represent small processes (of approximately machine instruction size)
and arcs tell the input/output dependences of the processes. The equivalence with our
description of computations is evident. There is no implicit synchronization mechanism
controlling the execution of processes, but each of them is executed as soon as possible
(that is, when all the inputs are available). There is no program counter guiding the
execution of processes. In principle, all the nodes are participating the computation from
the beginning of the computation. A node gathers information (packets) from incoming
arcs and executes the instruction(s) once all the required inputs are available — then it
passes the results via outputs arcs to the receivers.

In practice, sets of nodes are collected to sequential processes and the problem in
making processes out of graph nodes is how to maximize locality of references, while
creating a suitable amount of parallelly executable processes. Dataflow computers (Mon-
soon, EM-X, *T) are also often multithreaded computers unless their lean on the ability to
eliminate cache misses by having large cache memories. Multithreading means that each
processor is able to execute several independent threads simultaneously. The dataflow
computation leans on clever compiling techniques and language constructions (that sup-
port compiling). As in the PRAM case, the multithreading is used to hide the latency
of data transfers (see Figure 9) and it is compiler’s (rather than programmer’s) duty to
advance the multithreading properties of the machine in a balanced manner.

4 Parallelism on hardware

The computer hardware consists of processors, memories, and communication devices.
In the flow graph representation of Fig. 1, the nodes will be ultimately implemented by

10

processors (and memories), while arcs correspond to communication. A processor is a
device that transforms an input to an output. A memory can be seen as a processor
whose output is identical to the input, still the characterizing feature of the memory
is that it multiplexes a datum in time so that it is available when it is needed. Like
processor time, the memory time should be seen as a cost, counted in bit seconds, for
example. Communication is multiplexing of the datum in space, so that it is available to
(an)other processor(s). The fact that communication takes time, sets some constraints to
the mapping of the algorithm to the computer.

Due to physical speed, size, and connection limitations of semiconductor (or optical)
components, the number of components taking part in processing of the same data should
be kept small, otherwise significant slowdown occurs. This is why a large number of
components usually is divided into mostly independent blocks of high locality, e.g., separate
processors. Parallelisin inside such processing blocks is called instruction level parallelism
or chip level parallelism. Parallelism between blocks is called thread level parallelism or
machine level parallelism. Thus, due to certain physical constraints it is wise to apply
space multiplexing at several levels.

4.1 Processor

There are two basic architectural alternatives to speed up execution of instructions in a
processor using parallelism at instruction level: pipelined execution and superscalar ex-
ecution. Pipelined execution divides the execution of an instruction into s parts so that
different parts of subsequent instructions can be executed in different (sub)units simul-
taneously corresponding to multiplexing in space and time. Figure 7 illustrates, how a
sequence of 13 instructions is executed in a processor using 3-level pipeline in 20 (short-
ened) time units. For simplicity only the execution parts of instruction execution are
shown. Observe that pipelining changes the size of the blocking and therefore shortens
the time between consecutive waves. In theory, the pipelined execution gives an s-fold
performance increase with small hardware costs, if the instructions are independent of
each others. Unfortunately, this in normally not the case (see Figure 7), and some loss
of performance occurs. An extreme form of pipelined execution is used in vector proces-
sors, where so called vector instructions generate a set of homogeneous and independent
(sub)operations which are then executed in a very deep pipeline.

TIME
A TA__ A 2 "N (A
g i

A A \“\ Y

vy o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4

SPACE

3
T

f2

Ce) o\

B

V%\\F(

Figure 7: Execution of 13 instructions in a processor using 3-level pipeline.

In superscalar erecution, at most f instructions are executed in f functional units si-
multaneously corresponding to multiplexing in space. There are two types of superscalar
execution — dynamic and static. Dynamic superscalar execution is used in superscalar
processors, where delays caused by data dependencies are eliminated by buffering instruc-
tions in processors and dynamically selecting what instructions are executed in parallel.
Buffering increases the length of execution pipeline remarkably, which causes a lot of con-
trol dependency delays. This is why complex delay elimination techniques, like branch

11

prediction, are used extensively in superscalar processors. Static superscalar execution
is used in VLIW (Very Long Instruction Word) processors, where instructions to be ex-
ecuted simultaneously are selected in compile time by an advanced compiler. Figure 8
illustrates, how a sequence of 13 instructions is executed in a VLIW processor using three
functional units in 6 time units. VLIW processors offer potentially better performance
than superscalar processors, because compile time selection of parallel instructions is more
efficient than dynamic runtime selection. Moreover, certain VLIW constructions succeed
in avoiding unnecessary dependency delays typical to superscalar processors [6]. In theory,
the superscalar execution provides an f-fold performance increase. In reality, however,
dependencies prevent full utilization of functional units and some loss of performance
occurs (see Figure 8).

0:(6]/0:0
0)0;:0;
03

\/

/

HOG

v o 1 2 3 4 5 6

Figure 8: Execution of 13 instructions in a VLIW processor using 3 functional units.

If slackness is used to hide latency of commmunication, processors must be able to
handle multiple threads efficiently. This kind of thread level parallelism can be realized
by a multithreaded processor, which shares its time to multiplex threads in turn (see Figure
9). Fast context (i.e. thread) switching is implemented by multiplexing registers in space
and using special architectural techniques. Thread level parallel constructions may also
exploit instruction level parallelism, i.e., multiplex the execution of instructions in space
and time, as described in [7].

TIME
0 1 2 3 4 5 6 7 8 9
THREADS
COMMUNICATION
L memory access—»T MEMORY

je—— maximum latency ———»
of an interprocessor
memory reference

Figure 9: Execution of four threads (1,2,3 and 4) in a multithreaded processor.

12

4.2 Memory

Memories are sequential devices that enable time multiplexing of communication. Assume
that a memory can satisfy memory requests in some time period called reference time.
Consider situations, where a design (of a computation or a processor) suggests that y
memory requests should be fulfilled within the reference time, and y > z. A technique
called banking means multiplexing the memory in space to z memory banks, where each
bank can satisfy z requests (simultaneously) in the reference time. If y < z -z, the
banking can provide a solution to the memory congestion problem. Unfortunately, the
banking requires separate memory system communication lines for each bank, which may
effectively multiply the complexity of the system by z. Memory interleaving is an extension
of the banking, where only one communication channel is needed due to multiplexing of
memory requests and replies in time. Thus, both the memory banking and interleaving
provide a solution to trade time multiplexing for space multiplexing. The interleaving uses
pipelining (of requests and replies), i.e., it is based on both time and space multiplexing.

In a parallel computer, a memory module can be accessed by several processors. Con-
sidering a memory module, the role of routing machinery between processors and the
memory module is to demultiplex the requests, if a memory module is a sequential device.
In a multiport memory, the demultiplexing role of routing machinery is pushed into the
memory module (in extreme case: in front of each memory cell).

Also hashing is used for trading time multiplexing for space multiplexing. Hashing is
used, for example, when shared memory is simulated by distributed memory. By mapping
the address space of a (shared) memory with a good hash function to distributed memory
modules, it is not probable that a lot of memory accesses are targeted to the same memory
module and thus delayed, but they are dispersed over the space.

4.3 Communication

Communication has a very important role in parallel computation, because it makes
possible the multiplexing and demultiplexing in space, i.e. propagating subcomputations
to other units and collecting the results.

By common terminology, communication can be parallel or serial, where parallel means
sending several bit streams in parallel along several physical lines, while serial means
timesharing a single line. In our terminology, parallel communication uses multiplexing
in space (and time), while serial communication uses multiplexing in time.

There are more sophisticated uses of multiplexing/demultiplexing in communication,
though. If there is a fast enough bus connecting memory or processing units, it can be
timeshared so that the effect of a complete network is achieved. On the other hand,
routing algorithms can be speeded up by increasing the bandwidth. For example, if
processors in a complete network send randomly addressed packets to each other under
1-collision assumption (where all colliding packets fail), increasing the number of links
connecting a pair of processors from 1 to m increases success probability from 1/e to
1/61/m. In optical communication, there is a new means of multiplexing. In addition to
space division multiplezing (SDM) and time division multiplezing (TDM), there is also
wavelength division multiplezing (WDM) offering more bandwidth.

In general, a routing machinery is formed by multiplexing communication lines and
routing nodes in space. Within the nodes, buffers play a similar role as pipelining in
processors. The role of routing machinery nodes is to demultiplex incoming data streams
to outgoing data streams (which means space multiplexing). Since outgoing streams
are typically capacity constrained, the demultiplexing of parts of incoming streams to a
single outgoing stream is implemented by applying time multiplexing. The whole routing
machinery represents space multiplexed routing capacity (the amount of packets that can
be moved in unit time), but the machinery is also often made flexible in the sense that it

13

can dynamically time multiplex the movement of packets (i.e. delay them when necessary).

Another technique to compensate slow communication, slackness, was described at
the end of Section 3.3.1. From the routing machinery point of view, the idea is to have
routing capacity at least §)(s) per each source and average path length, if s is the slackness
factor.

5 Conclusions

The purpose of our study has been to provide an affirinative answer to the question: ’Can
one identify some basic elements of computations that can be used to explain various
concepts related to design of computers as well as algorithms?’. We made a tour to
computer science concepts appearing at various levels of abstraction from algorithm design
principles to hardware design. Surprisingly, it seems to us that these can be understood in
terms of splitting / joining and multiplexing / demultiplexing. The same ideas, concepts,
and design methods are used over and over again in various settings, but under a different
name. Especially, we find fascinating the application of the various forms of multiplexing
in the implementation stage. Besides providing meta-level understanding of the nature of
sequential and parallel computation, our study can also be used to reveal new solutions
to a given problem setting by comparing it to a similar but well-studied setting.

Efficient use of computational resources is one of the main goals in computer science.
Efficient use means using (a) all available resources (b) in the most efficient way. It should
be noted that point (b) depends on point (a) as all computational problems are not equally
parallelizable.

The basic idea of parallel computation is to speedup the computation by multiplexing
it in space. However, when mapping such parallel descriptions directly to machine, this
may turn out to be too expensive, take too much time, or be otherwise unfeasible. Then it
may be useful to multiplex some part of computations in time, since time seems to be much
more flexible resource than space when computations are implemented. Multiplexing /
demultiplexing in time / space together provide tools to balance computation to achieve
maximum efficiency.

Forming efficient computations has three sides: algorithmic description; machine,
where the algorithm is executed; and mapping of the algorithmic description into the
machine. Descriptions are two-dimensional: time multiplexed by nature, and suitably
parallel (space multiplexed). However, computers provide more dimensions for multi-
plexing and demultiplexing parallelism within processors (pipelines, several instruction
streams, ...), communication mechanism (SDM, TDM, WDM, ...), and memory mod-
ules (interleaving, ...). The problem in forming an efficient mapping is, how to utilize
the other dimensions of machine, while saving the timme dimension as much as possible.

References

[1] F. Abolhassan, R. Drefenstedt, J. Keller, W.J. Paul, and D. Scheerer. On the Physical
Design of PRAMs. The Computer Journal, 36(8):756 — 762, 1993.

[2] T. Cheatham, A. Fahmy, D.C. Stefanescu, and L.G. Valiant. Bulk Synchronous
Parallel Computing — A Paradigm for Transportable Software. In Proceedings of the
28th Hawaii International Conference on System Sciences (HICSS), pages 268 275.
IEEE Press, January 1995.

[3] D.E. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramo-
nian, and T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation.
In Proc. of Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 1 — 12, San Diego, CA, May 1993.

14

[4]
[5]

[6]
[7]
18]

19]

[10]

[11]

[12]

[13]

[14]

[16]
[17]
[18]

[19]

A. Formella, J. Keller, and T. Walle. HPP: A High Performance PRAM. In Eu-
roPar’96, Lecture Notes in Computer Science 1124, pages 425 — 434, 1996.

M. Forsell, V. Leppénen, and M. Penttonen. Efficient Two-Level Mesh based Simula-
tion of PRAMs. In Proceedings of International Symposium on Parallel Architectures,
Algorithms and Networks, ISPAN’96, pages 29 35. IEEE Computer Society, 1996.

M.J. Forsell. Minimal Pipeline Architecture-an Alternative to Superscalar Architec-
ture. Microprocessors and Microsystems, 20(5):277 — 284, 1996.

M.J. Forsell. MTAC - A Multithreaded VLIW Architecture for PRAM Simulation.
Journal for Universal Computer Science, 5(3):100 — 114, 1997.

A. Kautonen, V. Leppénen, and M. Penttonen. Constant Thinning Protocol for
Routing h-Relations in Complete Network. In Euro-Par’98, LNCS 1470, pages 993
- 998, 1998.

B. Lee and A.R. Hurson. Dataflow Architectures and Multithreading. IEEE Com-
puter, 27(8):27 39, August 1994.

V. Leppédnen. Studies on the Realization of PRAM. PhD thesis, TUCS, Department
of Computer Science, University of Turku, November 1996. TUCS Dissertation, No
3.

V. Leppéanen and M. Penttonen. Work-Optimal Simulation of PRAM Models on
Meshes. Nordic Journal on Computing, 2(1):51 — 69, 1995.

W.F. McColl. Scalable Parallel Computing: A Grand Unified Theory and its Practi-

cal Development. In B. Pehrson and I. Simon, editors, Proceedings, 13th IFIP World
Computer Congress. Volume 1, pages 539 — 546. Elsevier, 1994.

R. Orni and U. Vishkin. Two Computer Systems Paradoxes: Serialize-to-Parallelize,
and Queuing Concurrent-Writes. Technical Report CS-TR-3586, University of Mary-
land Institute for Advanced Computer Studies Dept. of Computer Science, Univ. of
Maryland, September 1995.

A.G. Ranade. How to Emulate Shared Memory. Journal of Computer and System
Sciences, 42(3):307 326, 1991.

Y. Shiloach and U. Vishkin. Finding the Maximum, Merging and Sorting in a Parallel
Computation Model. Journal of Algorithms, 2(1):88-102, 1981.

L.G. Valiant. A Bridging Model for Parallel Computation. Communications of the
ACM, 33(8):103-111, 1990.

L.G. Valiant. General Purpose Parallel Architectures. In Algorithms and Complexity,
Handbook of Theoretical Computer Science, volume A, pages 943-971, 1990.

A. Veen. Dataflow Machine Architecture. ACM Computing Surveys, 18(4):365 396,
December 1986.

U. Vishkin. Can Parallel Algorithms Enhance Serial Implementation? Communica-

tions of the ACM, 39(9):88 — 91, September 1996.

15

