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Abstract

We present a routing algorithm called generalized thinning algorithm for complete networks under
OCPC assumption. This algorithm generalizes earlier versions of thinning, which were proved to be
competitive in comparison with other algorithms found in literature.

1 Introduction

Routing algorithms have many applications in data communication. Our work is motivated by the
emulation of shared memory with distributed memory modules. If suitable techniques, such as the
slackness principle and randomized hashing [18], are used, implementation of shared memory can be
reduced to efficient routing of an h-relation in a complete network under OCPC assumption. By definition,
in an h-relation there is a complete graph, where each node (processor) has at most h packets to send, and
it is the target of at most h packets. By OCPC (Optical Communication Parallel Computer) or 1-collision
assumption [1], if two or more packets arrive at a node simultaneously, all fail. An implementation of an
h-relation is work-optimal at cost c, if all packets arrive at their target in time ch.

The first attempt to implement an h-relation is to use greedy routing algorithm of Figure 1. By greedy
principle, one tries to send packets as fast as one can. The fatal drawback of the greedy algorithm is the
livelock: Some packets can cause mutual failure of sending until eternity. Consider the situation, when
two processors have each one packet targeted to the same processor. Due to greediness they are forced
to send — and fail for ever since then.

proc greedy
for all processors pardo
while processor has packets do
choose an unsent packet at random and try to send it

Figure 1: Greedy routing algorithm.

The livelock can be avoided. Such an algorithm was provided by Anderson and Miller [1], and it
was improved by Valiant [17]. They realize work-optimally an h-relation for h € Q(logp), where p is
the number of processors. Other algorithms with even lower latency were proposed by [6, 7, 2, 3, 11].
Contrary to these theoretically strong algorithms, the algorithm of Geréb-Graus and Tsantilas [5] in
Figure 1 has the advantage of being direct, i.e. the packets are sent to their targets directly, without
intermediate nodes. For other results related with direct or indirect routing, see also [4, 16, 8, 9, 12, 15].
The algorithm of Geréb-Graus and Tsantilas routes h-relations work-optimally for h € Q(logploglog p),
where p is the number of nodes. Indeed, for h € Q(logploglogp), GGT routes any h-relation in time
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O(h) with probability higher than 1 —1/p® for any @ > 1. Due to its simplicity and directness, we choose
the GGT algorithm as our reference point. Our new algorithm presented in Section 2 is inspired by [15],
although the latter deals with the continuous routing problem, not the h-relation.

proc GGT(h,,a)
for ¢ = 0 to log; );_) h do
for all processors pardo

for e(eh + max{+/4eahInp,4alnp})/(1 — €) times do
choose an unsent packet x at random
attempt to send x with probability # unsent packets |/ h
h:=(1—-¢)h

Figure 2: Geréb—Graus and Tsantilas algorithm.

2 Thinning protocols

The throughput of the greedy routing of randomly addressed packets is characterized by
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where 1/h is the probability that one of the h — 1 competing processors is sending to the same processor
at the same time. (For all z > 0, (1 — 1/x)®~1 > e~1.) This would be the throughput if all processors
would create and send a new randomly addressed packet, which is not the case in routing an h-relation.
It may happen that at the end only two processors have a packed, addressed to the same target. In this
situation, under the OCPC assumption, the greedy algorithm, which always tries both packets, ends up
in a livelock. The solution is to decrease the sending probability.

In the GGT algorithm, the sending probability of packets varies between 1 and 1 —€¢ (0 < € < 1). The
transmission of packets is thus 'thinned’ by factor 1 to 1/1 — €, which prevents the livelock.

We now propose a very simple routing protocol, where thinning is more explicit. In basic form of
the algorithm, packets are routed phase by phase. In each phase, each packet (in random order) is tried
once. Thinning by factor ¢ means sending h packets in At units of time. Thinning factor may or may not
change from phase to phase. In the algorithm of Fig. 2, we have a thinning function #(:) that depends
on time. It is related with 7(¢) that characterizes how the problem size h is guaranteed to decrease from
phase to phase.

proc Thinning(h,hg,t,7)
for all processors pardo
1:=1
while h > hy do
Transmit h packets (if so many remain) within time [1..[¢(¢)h]]
hi=0—eYV"O)h; i:=i+1
while packets remain do
Transmit the remaining packets in time ¢(7)hg

Figure 3: General thinning algorithm.

An obvious drawback of thinning is that a processor cannot successfully send a packet at those
moments, when it does not even try to send. Thinning by factor ¢ would thus imply inefficiency by factor
t. However, this is somewhat balanced by the success probability, which increases from 1/e to 1/ el/t,
This is seen as follows.



Consider an h-relation being routed under OCPC assumption and thinning factor ¢. When a packet
is being tried, there may be k other packets, k < h, that try to arrive at the same target. Thus, the
success probability of our packet is
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Hence, the number of packets would decrease from h to (1 — e'/*)h in time th and thus the expected
throughput time would be te'/t. Tt is interesting to see that the growth of this function
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is very modest for small values of ¢ > 1 — this is a small price for the robustness.

Even though a sending probability less than 1 eliminates the deadlock, it does not guarantee fast
throughput. When h decreases, the sending becomes less and less random, and a fixed throughput
cannot be guaranteed. For that reason, we set a minimum size hg € Q(logp) for thinning window,
preventing repeated collisions. Furthermore, for high probability proof, we estimate the throughput
very conservatively. Therefore we compress h by factor (1 — e~2/7()) with suitable 7 < ¢ and not by
(1 — e '/#9) as can be expected, and still manage to route all packets in time O(h).

3 Analysis

One can prove that
1. the number of unsent packets decreases geometrically from h to O(log p)
2. the rest of the packets can be routed in time O(log ploglog p)

We will need

Lemma 3.1 t(1 —e~'/?) < 1++/2t, for all t > 0.

Proof. By using the Taylor series for e”, we have

—t+tel/t b+ttt +igm tigs +.

tl—e YY) = =
el/t 1+t+21t2+3zt3+"'
_ ltstaEtast _ 1
I+l 5z+5s+... 1+4+R
where R=[5z(3 —3)+505(53—5) + - )/[1+ 37 + 552 + -] > 0, for all t > 0. [ ]
Theorem 3.2 If ¢ < t(1) < t(2) < ... for some constant ¢ > 1, 7(i) = t(i + 1)/t(i) < d for some
constant 1 < d < ¢, and h € Q(log plog log p), then Thinning routes any h-relation in time O(h) with

high probability.

Proof. Consider the i’th round of the while-loop, when h = h;, where h; > kglogp = ho for a certain
constant kyg. We assume that at the beginning of such a routing round the routing task is a full h;-
relation, and aim to show that after the round the routing situation has reduced to an h;y;-relation
with high probability. We may assume fullness, because otherwise we can add ’dummy packets’ with
proper destination to those processors not having initially h; packets. The dummy packets participate
routing as the other packets. In the analysis below, the dummy packets can collide with normal packets
as well as with other dummy packets, but in the actual algorithm attempting to route a dummy packet
corresponds to an unallocated time slot (unable to cause any collisions). Thus the number of successful
normal packets is always better in the actual situation.



By (1), the expectation for successful packets is E; = h;/e'/"). Let N be the number of successful
packets, and apply Chernoff bound [10]

e E;

N

Pr(N<(1—¢eE;)<e”

with (1 — €)E; = h;/e'/7(). Thus,

Therefore
Lo/t 2 1

Pr(N < hife"/77) < e e < o
for h; > ho = 2 logp € O(log p).

In other words, in one round and one processor, the number of outgoing packets decreases to frac-
tion 1 — e~ /7 < 1 — 1/e with probability higher than 1 — p~2®. Hence, in all p processors, in
logy/(1-1/¢) h/hy < logy /(1-1/¢) b < /p or fewer phases the number of outgoing packets decreases to ho
with probability higher than 1—1/p. Respectively, the number of incoming packets decreases to hg at the
same rate. Removing the dummy packets from the system can only decrease the degree of the relation.

It was already stated that the level hy will be achieved in O(log(h/hg)) phases. We shall now show
that these phases do not take more than O(h) time. Indeed, consider two successive phases ¢ and i + 1
and the numbers S; and S;11 of their routing steps. Then

Sipr _ ti+Dhiys _ te+1) (1= e V70 = 7(i)(1 — e~1/7)
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by Lemma 3.1. Hence, S, S2, 53, ... form a geometric series, whose sum is O(h).

Observe that by choosing a larger hg as in the analysis above, we can easily show the same progression
in the degree of the relation with probability 1 — p~¢ for any positive constant a.

For the rest of the algorithm, the while-loop with h-relation level at most hg, consider sets of packets
with the same target. When the size of such a set is ' < hg, the success probability of one such packet is
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Thus the expectation of sending times for one such packet is at most ehg/h’. The sum of all these
expectations, until all such packets have been sent, is

1 1 1
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By another form of Chernoff bound [10]

Pr(T >r)< forr > 6E

S

we see that 1
PT‘(T > kiho IOgho) < ]ﬁ

for some k1 and therefore it is possible to transmit all such packets to their target in time O(log ploglog p)
with high probability. Finally, observe that there are at most p such groups of packets.

By combining the two phases we see that all packets can be routed in time O(h + log ploglog p) with
high probability. By choosing h € Q(log ploglogp) we complete the proof. [ |



The purpose of Theorem 3.2 is mainly to show the existence of such ¢(i)- and 7(7)-sequences that
the thinning algorithm works with high probability work-optimally for h € Q(log ploglogp). Especially,
Theorem 3.2 does not characterize all such sequences. The limiting condition 1 < d < ¢ < #(1) of Theorem
3.2 is due to lower bounding € by a constant, when 7(7) is bound to (i + 1)/¢(¢). The selection of ()
is due to forcing window sizes to form a simple geometric series. In general, window sizes, S;’s, do not
need to form a geometric series — the only requirement is that Y S; = O(h). Thus, t(i) does not need
to be a monotonically increasing series. Necessarily, 7(i) < t(i) and the difference (or ratio) of #(i) and
7(7) is used to gain high probability in decreasing the problem size by 1 — e 1/7() Decrease by factor
of 1 — e 1/7() could also be achieved by repeating the routing attempt by thinning factor t(i) by some
constant number of times. Observe that the selection of 7(¢) in the theorem does not allow ¢(1) =1 —
but it is easy to see that having ¢(1) = 1 gives the best throughput in the first round. Finally, notice that
Theorem 3.2 provides running time O(h) with high probability — giving up of high probability would
allow us to decrease ho and narrow the gap between ¢(i) and 7(7).

The condition for thinning factor ¢ is quite general. Consider three cases

1. 1 <#(1) =t(2) =¢(3) = .... This is the case of constant thinning (CT) [13]

2. t(i) = 1+ x t for some ¢t > 0. This is called linear thinning (LT) in [13]

3. t(i) = t* for some t > 1. This case is called geometric thinning (GT) in [13, 14]

4. t(i) = t1 + (to — t1)(tanh(i — k) — tanh(—k))/(1 — tanh(—k)) for some 1 < ¢t; < t3 and k > 1. We

call this function sigmoid thinning (ST).

From Theorem 3.2 we get

Corollary 3.3 If h € Q(logploglogp), then constant, linear, exponential, and sigmoid thinning route
any h-relation in time O(h) with high probability.

4 Experiments

We ran some preliminary experiments to get practical experience of the new algorithm, see Tables 1
and 2. In the experiments of Table 1, the number of processors was p = 1024, and slackness factors
h = 16,32,64,128,256 were tried. The results for GGT are taken from [14] and the results for CT, GT
and ST are averages of 100 experiments. In CT and GT experiments, hy = 8 was used. However, in
ST experiments hp = 1 was used, somewhat surprisingly. It proved out that if ¢ grows high enough
soon enough, h can decrease towards 0 continuously. The acknowledgement of packets does not counted.
Collisions within processors were avoided by allocating a unique sending moment of time for each packet
from the time window [1...th].

| A] GGT [ CT1.1 | LTL.1 | GT1.1 | ST4.0 |

16 5.8 5.2 5.7 5.9 5.2
32 5.8 4.4 4.6 4.7 4.6
64 5.7 3.8 3.9 4.0 3.9
128 5.6 3.4 3.5 3.6 3.5
256 5.6 3.2 3.4 3.4 3.2

Table 1: Routing cost of the GGT, CT, LT, GT and ST algorithms. In GGT, € = 0.5, a = 0.01 were safe
and fast. In CT1.1, ¢(0) = ¢t(1) = --- = 1.1. In LT1.1, ¢(0) = 1.1,¢(1) = 1.2, etc, t(i) grows linearly. In
GT1.1, t(0) = 1.1,¢(1) = 1.2 etc, (i) grows geometrically. In ST4.0, ¢ grows from 1.1 to 4.0 guided by a
“sigmoid” function t(i) = t1 + (t2 — t1)(tanh(i — k) — tanh(—k))/(1 — tanh(—k)). The point of maximal
growth k was between 6 and 10. In CT, LT, GT, and SG experiments, 7(¢) = t(i + 1)/¢(¢) as in Theorem
3.2.



[ ho | CT1.1 | GT1.1 ||
4 3.5 3.6
6 3.7 3.7
8 3.7 3.5

12 3.9 3.5
16 3.8 3.6
24 4.2 3.8
32 3.8 4.0
Table 2: The effect of hg on the cost, when p = 1024 and h = 128. In CT1.1 ¢(0) =¢(1) =---=1.1. In

GT1.1 ¢(0) = 1.1,¢(1) = 1.2 and ¢ grows geometrically.

The Table 2 demonstrates the effect of hg. Note that the high reliability requires a lower bound for
ho (except in case ST, where ho = 1 was used), but obviously too high value of hg implies inefficiency.
By the results in Table 1 and Table 2, the constant thinning algorithm CT and the geometric thinning
algorithm GT appear to work better than the GGT algorithm.

In addition to mere numbers, our routing simulator shows the progress of routing graphically, see
Figure 4.

Applat
h—rel — gt | delay — | sims=1 - | _Start'l _Stop|
p=1024 — | h=128 - | homg = | =11 =] =tz o

proto=gt t0=1.1 t1=1.2 p=1024 h=128 h0=8 cost=3.5E #=1 =

_—
tesAtl /g
ah

Black=successful, Yellow=colliding, Red=not tried

Applet started,

Figure 4: Routing simulator. The bottom band of the graphical representation shows the proportion
of successful processors, the middle band failed processors, and the top band passive processors. The
vertical lines at intervals of t(i)h, ¢ = 0,1, ..., until (i) < hg, and after that at intervals of ¢(i)ho, separate
the phases of the algorithm.

5 Conclusions

We have presented a simple direct routing protocol for routing h-relations work-optimally in complete
networks. Studying the h-relation as opposed to a continuous routing setting is motived by implementa-



tion of shared memory abstraction and the BSP model [18]. On the other hand, in contemporary data
communication situations optical and wireless networks can be seen as complete networks.

Our thinning protocol is very simple and since our preliminary results indicate the routing cost to be
rather close to the optimum, we believe our thinning protocol to be practical. Theorem 3.2 shows the
existence of proper t(¢)- and 7(i)-sequences, but does not attempt to fully characterize all such sequences
that guarantee the algorithm to solve the h-relation routing problem work-optimally. Quite obviously,
there exists many such sequences not characterized by Theorem 3.2.

In the future, we aim to study ¢(i)- and and 7(7)-sequences more extensively to achieve smaller routing
cost. On the other hand, we would like to apply the ideas behind the thinning algorithm to continuous
routing settings.
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