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Abstract

A new approach for the inverse treatment planning in radiation therapy with the multileaf colli-
mator (MLC) technique is presented. The application of the MLC-techniques requires an algorithm
for the computation of the positions or velocities of leaves as a function of time such that the pre-
scribed dose in the patient space is obtained. First the intensity distribution in the treatment space
is determined applying some inverse treatment techniques. Then an MLC control algorithm which
generates the determined intensity distribution is required. In the present paper a mathematical
model is given which controls the MLC such that the intensity distribution is obtained under selected
dose constraints. In addition an MLC control algorithm not requiring an intensity distribution as an
intermediate step is expressed. The algorithm uses the MLC leaf positions and delivery times directly
in inverse treatment planning. The method can easily be implemented to multiple static treatments
(" step-and-shoot” ) but a modification to dynamical MLC techniques is also straightforward.

AMS-classification: 49-04, 92C50, 93-04

1 Introduction

Conformal radiation treatment planning with MLC traditionally faces with two inverse problems. The
first one is to determine the intensity distribution in the treatment space in such a way that the prescribed
dose distribution in the patient space is obtained. The second problem is to determine the trajectories
of the leaves of the multileaf collimator to produce the required intensity distribution.

For the first problem many algorithms for inverse treatment planning have been developed (e.g.
[3,4,5,8,6,9, 11, 12, 15, 19, 25, 27]). As to the second problem the methods to control the collimator
leaves can be divided into two cathegories: (1) In dynamic MLC techniques the leaves can be moved
during the treatment delivery and so the dose is delivered continuously corresponding to each individual
field. The radiation is interrupted during the selection of subsequent fields. For the implementation of
this method one has applied e.g. so called ”"closed in” and ”sweep up” techniques [14, 16, 17]. (2) In the
multiple static collimation techniques the positions of the leaves are discretely changed between subfields.
The irradiation is interrupted during the motion of the leaves [1, 20, 22, 28].

One of the advantages in the use of multiple static techniques is the easier control of leaves since the
limited velocity and acceleration of leaves are not needed to take into account. In the dynamic collimation



the maximal velocity (and acceleration) will be one of the constraints in optimization algorithms. A
disadvantage of the multiple static collimation is that it may prolong the whole treatment time.

Our aim is to express an algorithm for the control of the multileaf collimation which is based on
the use of an explicit object function. This enables an easy application of the physical limitations of
the multileaves. The second advantage of our algorithm is that this approach makes it possible to state
the whole inverse treatment planning optimization with the help of multileaf parameters unnecessiating
the determination of intensity distribution as an intermediate step. This idea is based on the following
observation.

Applying the pencil beam model dose D(z) in the patient space V can be given by the integral

D(z) = lzzl/Uhl(a:,u)\Ill(u)du, zeV (1)

where the kernel h;(x,u) is a dose deposition kernel corresponding to the I*! field S; and ¥, is the intensity
distribution per unit area of S; in the treatment space U [9]. If we assume N leaf pairs then the intensities
Uy;(u) in strips U; = [—a, a]X]ua i—1,us2 ;[C U corresponding to the field S; can be obtained by

T
\I/l,(u) = | H(ali(t) — Ul)H(U1 - bli(i’))dt, u € U; (2)

where a;;(t) and b;;(t) are the leaf trajectories corresponding to the strips U; (figure 1). ¥ is the (uniform)
intensity distribution per unit time and area incident on the MLC. H is the Heaviside function. The
idea to use the integrals of the Heaviside function in the determination of ¥;; in a certain special case
originated in [1]. Combining (1) and (2) we obtain

L N T,
D) =% » > /U /0 (@, w)H (i (t) — wi)H (ur — bii(t))dtdu, = € V. 3)

=1 i=1

Thus the dose can be obtained with the help of leaf trajectories. Various discrete approximations lead to
the practical implementation of this idea and it is demonstrated below.

In the present investigation our main interest lies in the multiple static treatment. The method is
however applicable also for the dynamic treatment schemes although no practical implementation for
the dynamic collimation, that is, techniques similar to ”closed in” (”curtain shutter”) or ”sweep up”
(”shrinking field”) techniques is given here.

The considered inverse treatment planning algorithms lead to the large dimensional nonlinear multiex-
tremal optimization problems. Hence a careful initialization of the problem (section 6) or an application
of some global optimization scheme ([13, 7]) is needed. After the initialization we seek the feasible solution
by applying the linearization of the dose function and the Cimmino algorithm ([3, 4, 9]).

2 Mathematical model for the leaf control to generate a given
intensity

At first we suppose that the intensity distribution ¥ for the treatment is given. We construct a model for
the control of MLC leaves such that their movements will generate the prescribed intensity. It sufficies
to consider one field, say S, only.

We use the formalism of [20]. Assume that the collimator plane (treatment head) is a rectangular
U = [—a,a] x [-b,b] C R%. Denote the point of U by u = (u1,u2). The collimator leaves are orthogonal
to ug-axis. Suppose that the leaves have a positive width d and that there are N leaf pairs (B;, 4;), i =
1,...,N. This means that 2b = Nd. Let U; := [—a,a]x]uz,i—1,u24[, i = 1,..., N be the strips along
ui-axis determined by the leaf pairs (B;, A;) (see figure 1).

Furthermore, let ¥ = ¥(u) = ¥(uy,u2) be the prescribed intensity distribution per unit area of the
considered field S. We assume that ¥ is a piecewise continuous function U + R such that ¥(u) is



uz

Figure 1: The geometrical setting of the treatment head. The number of leaf pairs is N = 8. A; is the
right hand leaf and B; is the left hand leaf.

constant W;(u1) for us €Jus;—1,us [, that is ¥(u) = ¥;(u,), for u € U;. This will be the case when we in
the calculation of intensities subdivide the treatment space into bixels in such a way that the partition
points in us- direction are exactly the points us ;. Let ¥ be the (uniform) intensity distribution per unit
time and unit area incident on the MLC. Finally, let T be the treatment time corresponding to S and let
the right (left) hand head of the leaf A; (B;) be in a point a;(t) € [—a,a] ( b;(t) € [—a,a]) at the moment
te€[0,T].

In [20] we derived that, in the case when the intensity is given, the leaf control problem for MLC can
be stated as follows:

Suppose that U is given. Let T be a positive number. For anyi = 1,..., N determine the leaf trajectories
a; [0, T] =R, b;:[0,T]+— R such that

\1/0/0 H(ai(t) — ua)H (ur — bs(1))dt = Us(ur), u € U (4)
bl(t) < a,-(t), teE [O,T] (5)
bz(t) Z —a, az(t) S a, te [OaT] (6)

where H is the Heaviside function
1, z>0
Hz) = { 0, <0

Remark 1 A. The above model assumes that the leaves do not produce scattered radiation and there is
no leakage through or between the leaves. In practice there exist scattering and leakage in the leaves and
the Heaviside function must be replaced with a modified (steplike) function. These effects are possible to
take into account in the modelling. We shall consider this issue later.

B. In the above problems besides to determine the trajectories the minimization of the treatment time
T is important.

C. The Heaviside function H satisfies

H(zy —z)H(z —22) = H(z1 —x) — H(z2 — )



for 1 > z5. Hence we are able to replace (4) by
T
\1:0/ [ (as(t) — un) — H(bi(t) — un)]dt = Us(wr), u € Uy,
0

The substitution may simplify some computations. This note is (approzimately) also concerning for the
below done replacements of H.

3 Optimization of the leaf movements to generate a given in-
tensity

3.1 Optimal solution for one leaf pair

For clearity we first investigate one particular leaf pair (B;, A;). The exact Heaviside function over the
interval [—a, a] is given in section 2. We replace the Heaviside function with a linear combination

H(z) =) djv;(z) (7)
j=1
or with the functions like ~
H(z) = C1 + Crarctan(Csx) (8)
H(z) = C1 + Cy(1 — tanh(Csz)) (9)
H(z) = erf (z) = ﬁ /z e/ s, (10)

H will modify the Heaviside function to achieve more realistic intensity distribution from the leaf head. In
the above replacement (7) {v;| j = 1,...,7} is a chosen base and d; respective coefficients. The unknown
parameters d;, Ci, C2, Cs, 7 for (7-10) can be obtained by desirable interpolation techniques by using
e.g. the measured or Monte Carlo data taking into account the scattering and leakage.

The replacement of Heaviside function with a smooth function is necessary because of head scatter
and leakage. The above correction still neglects the scattering from the leaf sides and it neglects the
leakage between the leaves. In addition the ”groove and tongue effect” is neglected. Although we have
partly considered these corrections ([20]) we omit them for simplicity. The corrections are not essential
here.

For the second we assume that the leaf trajectories can be expressed by the linear combinations

ai(t) = aundn(t), (11)
k=1

bi(t) = ibimk(t) (12)
k=1

where {¢1,...,¢n} C Cpe([0,T]) is an appropriate basis system. Here Cpc([0,T]) denotes the space of
piecewise continuous functions f : [0,7] — R. In sections 3.3 and 5.3 we consider examples of the choices
of basis {¢x|k = 1,...,n} and {¢;|j = 1,...,r}. Since we consider a fixed (say i*") leaf we can write
a;r, = ag, bir = by, without any confusion.

When we replace H by H and substitute the expressions (11-12) to the integral (4) we obtain

/0 Q(ul,t)dt = \Ili(ul) (13)



for u € U; = [—a, a]x]ug;—1,us ;[ where

Qlur,1) = Boff (2 axdu(t) — u1> i (u - ibmk(t)) . (14
k=1 k=1

Denote _
a=(ai,-.,an), b= (br,...;bn).

Furthermore, denote

T
o@Bw) = [ Qb (15)
0
Then by (13) ~
¥i(u1) = q(@, b) (u1). (16)
Our idea is based on the minimization of the norm
lla(@,b)(-) — | (17)
with respect to (@,b) € R*". Here the norm || - || may be e.g. the Lebesgue square norm || f|| 1,([—a,a)) =

1
(ffa |f(u1)|2du1) *. The norm in (17) can also be replaced with some of its discrete counterpart e.g.
with the discrete square norm || - ||2. ~ ~
As a conclusion we find that the object function is defined by f;(@,b) = ||¢(@,b) — ¥;||. The optimiza-
tion problem can be stated as follows:

Find the (global) minimum

min  f;(a,b) (18)
(a,b)eR2n
under the constraints
b(t) < a(t), (19)
a(t) < a, b(t) > —a, t €[0,T]. (20)

Remark 2 In the case of the Lebesgue square norm we can decompose the object function

£@H = [ la@hm)Pan

2 (/a q(a, l_))(ul)\Il,-(ul)dul) + /a \Ili(ul)Qdul. (21)

Denoting
I(@,b) := /j lq(@, b) (u1)2dus, (22)
L;(@,b) :== —2 (/_a q(a, I_))(ul)\Ili(ul)dul) (23)

the object function f; is

fi(a,b) = L(a,b) + Ly(a,b) + /a U, (uy)?du; .

—a



3.2 Optimal solution for the total leaf control

In section 3.1 we considered one individual leaf pair. We shall now consider the control of all leaves
applying the scheme of section 3.1. As mentioned above it sufficies to consider only one field. As in
section 3.1 we assume that a; and b; can be expressed as linear combinations

ai(t) =Y awdi(t), (24)
k=1

bi(t) = Xn: bir o (t) (25)
k=1

for i =1,...,N. We denote @; = (a1, ..., @in), b; = (bj1,...,bin) ER?*, i =1,...,N.
For an individual leaf pair we obtained the object function

fi@i, bi) = |lq(@;, b:)() — . (26)

For the total leaf control problem we choose the object function F' : R**V — R such that
— — N —
F(@,....,an, by, -, by) = Y fil@i, bi), (27)
i=1

and the earlier expressed restrictions (section 3.1)
bi(t) < ai(t), (28)

a;(t) <a, bi(t) > —a, i=1,...,N, t €[0,T]. (29)

The real situation in the case of overall leaf configuration implies some additional constraints. The
additional constraints might be, for example ([20])

ai(t) > =k, bi(t) <k, i =1,.., N, t € [0,T], (30)

a;(t) —bi(t) >7 ora;(t) —b;(t) =0, e =1,..,N, t € 0,T]

which under (28) is equivalent to

(a;(t) — bi(t))(ai(t) — b;(t) —7) >0, i =1,..,N, t € [0,T]. (31)
Furthermore, the leaf movements may be limited by the constraints

bi(t) < ait1(t), bix1(t) <ai(¥), i=1,..,N -1, t € [0,T], (32)

az(t) _aj(t) S e bl(t) - b.](t) S e 1'7.7 = 17"'3N7 te [O)T] (33)

Above v, 7 and k are positive numbers. The condition (30) is needed because the movement of the leaves
over the central axis of the field is restricted. The condition (31) means that the opposite leaves are not
too near each other or they are closed. Conditions (32-33) are so called interleaf conditions.

Hence the total leaf control problem can be stated as follows:
Find the global minimum

‘min_ F@@,...,an,b1,...,bN) (34)
(@1yeees N b1y b ) ER2AN

under the constraints (28-33).

Besides the above constraints we are able to add other limitations for the trajectories a;, b;, for
example the unidirectionality of leaves. We can also use weight factors with the above object function.



3.3 A basis system of ¢, = x;

Consider the following possibility to choose the basis system {¢1, ..., ¢n}. Let {t1,....,t,} be a partition
of the interval [0,7] and let x; be the characteristic function of the subinterval [tg—1,%x], & = 1,...,n,

that is
_J 1, t € [th—1,te]
Xe(t) = {0, otherwise

We choose the computationally simplest case ¢ = xx. This choice of basis is especially useful in the
case of multiple static treatment techniques (section 5.1). Here we note that the constraints with respect
to this basis can easily be computed. Since a;(t) = aix, b;i(t) = b, for t € [t—1,tx] and O otherwise the
constraints (28-33) are equivalent to the following conditions:

bir <ajg, 1=1,...N, k=1,...,n (35)

aip <a, bijp >—a,i=1,..,N, k=1,...,n (36)

air > —k and by, <k, i=1,..N, k=1 ..n (37)
(as — big)(ae — b —7) >0, i=1,..,N, k=1,..,n (38)
bir < @itk bisk < @iy i =1, N—=1, k=1,..,n (39)
ait — @ik <7, big —bjr <7, 4,5=1,.,N, k=1,...,n. (40)

Remark 3 The total leaf control for several fields S;,l =1, ..., L is reduced to the total leaf control for one
field since the corresponding intensity distributions ¥, are independent in the case where the intensities
U; are precalculated. We optimize each field separately applying the above scheme.

In section 5.3 we shall give examples for the choice of basis system v;, j = 1,...,r in such the way
that the above quantities in the case of basis system ¢ = x can be explicitly calculated.

4 Inverse planning with multileaf parameters

4.1 Inverse problem

Here we express a novel approach to solve the problem of inverse treatment planning with the MLC. The
method does not require determination of the intensity distribution as an intermediate step. Specifically,
we compute the dose D = D(z) in the patient space with the help of multileaf parameters. Thus we are
able to optimize or to find feasible solutions directly by using multileaf parameters.

The patient space is modelled as a three-dimensional interval V typically containing planning target
volume (PTV) T, organs at risk (OARs) C and normal tissue N. We have the mutually disjoint union
V =TUCUN. As above the field is modelled as a 2-dimensional interval U. Assume that we have L
fields S; and assume that the corresponding intensity distributions are ¥;,l =1,..., L.

In practise the dose calculations must be done with respect to some fixed coordinate systems. For
the origin O of the patient coordinate system (z1,z2,z3) one often chooses the isocentre point. The
treatment coordinate system (u1,us) is transversally to the line OS; which connects the isocentre and
the focus. Figure 2 illustrates these choices. O; is the intersection of patient surface and the straight line
08 (field central axis). Gantry and couch angles oy, [ are the rotation angles with respect to z3- and
To- axis, respectively. The collimator angle 6; is the rotation angle with respect to z1- axis. We fix that
0; = 0 when u;- axis is along z3- axis.

In mathematical modelling of the radiation response by the pencil beam model we apply the integral
equation (1). Denote the leaf trajectories of the field S; by a;(¢) and by;(¢). Finally, let T; be the treatment
time corresponding to the field S;.

Using the above definitions the basic problem of the radiation therapy with the help of leaf trajectories
can be stated as follows:
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Figure 2: Coordinate systems in dose calculations.

Suppose that Dy is the prescribed (uniform) dose in T. Furthermore, suppose that the upper bounds
of dose in critical organ(s) and normal tissue are D¢ and Dy, respectively. Let T; be positive numbers.
Find the number L of fields S;, gantry, couch and collimator angles oy, By, 0, respectively, of the
fields Sy. For any i =1,..,N, 1l =1,...,.L determine under the above described constraints (28-33) the
leaf trajectories ay; : [0,T}] — R, by : [0,T;] — R of the fields S; such that the overall dose distribution
computed by the integral (1) satisfies
D(.’I)) = -D(Ja T € T,

D(z) < Do, z € C, (41)
D(z) < Dy, z € N.

We suppose that parameters L, oy, ; are given. In section 6 we consider the determination of
collimator angle ;. It is expected that the exact solution of the above problem (under the stated or other
constraints) does not exist. Hence it reasonable to seek only the approximative but however optimal or
feasible solutions of the problem. Here the feasibility of a solution means that instead of the requirement
D(z) = Dy, z € T we demand that

dr <D(z) < Dr, z €T

where dr (D7) is the lower (upper) bound of the dose in PTV.

Besides the requirements (41) one often demands that the so called dose volume constraints ([2, 26])
are fulfilled. The dose volume contraints are putted for a certain structure. For example for the critical
organs C these conditions can be shortly described as follows. Let v(D) be the volume fraction of C that
receives a dose greater than D. We demand that

v(D) < vy, for all D > Dy (42)

where v is a given volume fraction and Dy is a given dose. The function v = v(D) is so called differential
dose volume histogram. Because the dose volume histogram is a decreasing function with D the condition
(42) is equivalent to

U(D()) S Vo - (43)



In practice the condition (42) must be handled as follows. Take a partition {V,,|m =1,..., M} of C
and choose z,, € C. We demand that

count{m =1, ..., M|D(zy,) > Do} <y

= (44)

where count denotes the numer of elements of a set. In the case where dose volume contraints are taken
into account the conditions like (44) are added to the list (41).

The above given criteria are so called physical optimization criteria. In literature there exists also so
called biological optimization criteria, which are based on the tumor control probality (TCP) and normal
tissue complication probality (NTCP) (]2, 26]), for example. Following the formulation of [2] we find that
TCP and NTCP can be calculated e.g. by

TCOP = elr p(@) In(k(D(2))) 4 (45)

1 ((D)rr—Dc,50)/oc 2/ (46)
NTCP = — e v 4dt 46
V2T /7

where 1
_ P.\1/P
<D >p= M(C)l/”(/cu)(m” dx)*'P.

We shall here not consider the optimization based on the biological criteria. So we do not give the detail
explanation and optimization schemes for this option. The below done considerations can be rather
straightforwardly modified for the optimization strategies based on the biological object functions.

4.2 Optimal solution for the inverse problem

Let U; be as earlier the strip [—a, a]X]uz ;—1,u2;[. In section 3 we found that the intensities ¥y;(u1) in
strips U; corresponding to the field S; (recall ¥;(u) = Uy (u1), u € U;) can be obtained by
T
\Illi(ul) =, H(ali(t) — ul)H(ul — bli(t))dt, u € U;. (47)
0

The strips U; are mutually disjoint and U = UY , U;. Thus we get from (1)

D(z) = 2/ hi(z,u)¥(u)du = ZZ/ hi(z,w) Uy (up )du (48)

=1 i=1

Substituting (47) to (48) we obtain

D(z) = \IIOZZ/ / (2, w)H (g (£) — up ) H (uy — by;(t))dtdu. (49)
=1 i=1
To get a computable expression for D(z) we use the earlier (sections 7, 3.2) introduced replacement
Wyi(w) = q(@, bii)(w1), v e U; (50)
where @; = (a1, -, Qin, ), 01i = (bii1, -+, biin,) € R are the multileaf parameters for which

ai(t) =Y ardu(t),

k=1

byi(t) = ZI buix Pur (t)

k=1



The basis system {¢1, ..., ¢} may depend on the field S; so we wrote ¢y, £ = 1,...,m; instead of ¢y.
From (48) and (50) we obtain

L N
D) =>">" /U | ha (2, u)q(@s, big) (ur ) du. (51)

=1 i=1
Denote
(a, b) = (611, iy Q1IN -, QL1 ---,ELN,EU; ----;ElN; ...,5[,1, ---,ELN) € R2N(n1+"'+nl‘).
Furthermore, denote
L N ~
Dab) = 33 [ Ml waa,bi)w)du (52)
1=1 i=1 Y Ui
L N T . ny
= \110 Z Z/ / h[(ﬂ?,U)H (Z alik(blk(t) - U1>
=1 i=1 /Ui /0 k=1
n
-H (ul - Zbumlk(t)) dtdu.
k=1

We are able to compute the function D(z,a,b) when the kernel h;(z,u) is known. Previously we have
developed data fitting methods for determination of the continuous approximations of h;(z,u) ([9, 18]).

With these concepts we are able to formulate different kind of optimal and feasible problems with the
help of multileaf parameters. As an example we consider the following four possibilities. For simplicity
(to get the constraints more simple) we assume the step function basis ¢ = x given in section 3.3. In
addition we have for simplicity specified the used norms in object functions

I. Optimal solution A. Define an object function

F(a,b) = allDo—D(,ab)|],m (53)
+ @l/(Dc = D(,a,b))-[1,c) +esll(Dn = D(-,a,b)) |7,
where c¢1, c2, c3 are positive weights and where the subindex — refers to the negative part of a function.
We state the following extremum problem:
Find the global minimum
min F(a,b) (54)
(a,b)GRQN("1+‘“+"L)

under the constraints
blik S Qlik , l= 1, ...,L, 1= ]., ...,.Z\/vJ k= 1, 1y (55

Qlik S a, blik Z —a, l= ].,...,L, 1= 1,...,N, k= 1,...,7Ll

—~~
[
=)

Qlik Z —K, blik S K, l= 17 ...,L, 1= 1,...,N, k= 1,...,nl
(alik — blik)(alik — bk —7) >0,1=1,..,L,i=1,...,.N, k=1,...,m

—_~ o~
ot
@

blik S A(i4+1)k> bl(i+1)k S Qliks l= 1, ...,L, 1= ].7 ...,N - ]., k= 1, ey Ny
aik — ik <, bk — bljk <v,l=1,.,L 4,5=1,..,N, k=1,...,mn. (60

—~~
(S
=}

II. Feasible solution. In this approach the patient space V is divided into subregions (so called voxels)
Vp, p=1,..., P. Suppose that z, € V. Then we have

L N _
D(z,) = D(zpab) =3 % /U Iz, w)a@rs i) () du. (61)

=1 i=1

10



Divide the index set J = {1, ..., P} into three disjoint sets J = J; U J; U J3 where
Ji ={p€ J|z, € T},

J2 ={p € Jlz, € C},

Js = {p € J|z, € N}.
Let Dy, D¢, Dt be the prescribed upper limit of dose in normal, critical and tumor tissue, respectively
and let dr be the lower limit of dose in tumor tissue.

Then we can state the following feasible problem:
Find (a,b) € R2N(m+-+nL) for which the inequalities

dTSD(xpanb) SDT) pEJla (62)
D(xpaa:b) S DC’: pE J2a (63)
D(mpaa)b)SDNa p€J3, (64)

are satisfied under the constraints (55-60).
In addition to the requirements (62-64) one can add the dose volume constraint for the critical organs

count{p € Jo|D(zp,a,b) < Dy}
count(Js)

S Vo (65)

and similarly for the normal tissue.
III. Optimal solution B. Besides of problem I we can state the corresponding discrete version. Define
an object function

F(a,b) = ¢ Y [Dy—D(zp,a,b)]
pEJ1
+ ¢ Z |(DC _D(wpaa’b))—|2
pEJ2
+ ¢ Y |(Dn — D(zp,a,b))_|*. (66)
pEJ3

where ¢1, c3, c3 are positive weights.

IV.Optimal solution C. We refine the optimal solution B to take into account smoothness of the dose
distribution in PTV by minimizing the gradient (differences). In addition we insert the penalty for the
dose volume constraint of the critical organ. Define an object function

F(a,b) = ¢ Y |Dy—D(zp,a,b)]
pEJ1
+ C Z |(DC _D(mpaaab))—|2
pEJ2
+ ¢ ) |(Dy — D(zp,a,b))- [
PEJs
count{p € Jo|D(zp,a,b) > Do}, ,
+ (v count(Js) )=
+ ¢ Y [|[VeD(zp,a,b)|, (67)
pEJ1

where V, is the gradient of the dose distribution with respect to z-variable. The gradients can be
calculated approximately as differences corresponding to each coordinate direction. ¢y, c2, c3, ¢4 and cs
are positive weights.

11



For optimal solutions B and C we state:
Find the global minimum
F(a,b) (68)

min
(a,b) eRQN(n1+...+nL)

under the constraints (55-60).
The feasible problem can be converted to the extremum problem by replacing the term ¢; 3

D(zp,a,b)|? by

pEJ1 |D0_

et Y [(Dr = D(zy,a,b))-[* +c2 Y |(D(zp,a,b) —dr)-|*

pEJ1 peJy

(cf. also [7]).

5 Multiple static collimation

5.1 Steplike basis ¢

Multiple static collimation means that corresponding to each field S; the interval [0, T;] is divided into
ny subintervals [tio, t1], .- [ti(n,—1)s tin,] @and during each subinterval the MLC configuration is fixed. So
the whole treatment time will be greater than T + ... + T}, since the change of the MLC configuration
corresponding to the subinterval [t;x_1), tix], ¥ = 2, ..., to the MLC configuration corresponding to the
next subinterval takes time. Also the change of field configurations will take time.

Let {ti, .., tin, } be a partition of the interval [0,7;]. Furthermore, let the basis functions ¢ be the

characteristic functions [ ]
— 1, te tl(kfl)atlk
xa () = { 0, otherwise

Then a;;(t) = S pt, aiex(t), bii(t) = S pty burxie(t). The leaf configurations corresponding to the
subintervals [tyr—1),tik], & = 1,...,m are called subfields of the fields S;, | = 1,...,L. The practical
interpretation of parameters a;;x, by, is that the edges of the i*" leaf pair (B;, A;) corresponding to the
k' subfield of the I*! field are at points by, and a;;;. In the following we give a model which is specifically
related to the multiple static collimation and which enables to set the lengths of subfields #;;, — li(k—1) as
optimization parameters.

Applying the above choice of basis we find that

— 7—‘1 ~ ~
9@, bii)(u1) = Yo [ H(au(t) —u1) H (u1 — by (t)) dt

0
ny tik B ny B ny

= ¥ Z/ H (Z arik Xtk (t) — u1> H <U1 -3 bzika(ﬂ) dt
k=1"tur-1) k=1 k=1
ni N _

= ¥ Z H(ayr, —w1)H (u1 — bur ) (e — tie—1))- (69)
k=1

We observe that the lengths 6ty == t1 — ti(k—1) of the subintervals [tl(k—l);tlk] can also be chosen
parameters in the optimization processes. From practical point of view that possibility is very desirable
because with this degree of freedom we may decrease the number of subfields and hence the total treatment
time. Thus in the case of steplike basis we replace the quantity q(ay;, by;)(u1) by

ny

q(&li,Bli, 5t1)(u1) =V, Z ﬁ(alik — ul)ﬁ(ul — blik)(6tlk) (70)

k=1

where 0t; := (0t11, ..., 0tin,). The above stated extremum problems are similar with the exceptions that
the optimization is done with respect to (a, b, §t) € REN+D(m+.+n1) and that the additional constraint

OSJtlk ST[, l:l,...,L, k:l,...,nl (71)

12



is required. Here §t := (dt1,...,6t) € R T-+7L Instead of (71) one may demand that for some ¢y > 0
co <oy <Tpordyy, =0
which is equivalent to
0< 0ty <Tp, (O —co) >0, 1=1,.,0, k=1,...,m (72)

This restriction will hinder too short subfields.
In section 4 the dose D(x,a,b) must be replaced by

L N
D(z,a,b,6t)=> "> /U | b (2, w)q (@i, bii, 6t7) (wr )du (73)

=1 i=1

when we use dt;;, as optimization parameters.
Taking into account (69) we find that

I N m
D(z,a,b,6t) =T > > > | / h(z, w) H (agip, — w) H (ug — byag )du]0tyy, (74)
1=1 i=1 k=1 7 U
Due to the Remark 1 (74) can (approximately) also be written as
L N ny _ N
D(z,a,b,dt) = ¥q Z Z Z[/ hi(z,u)(H (arir — u1) — H (b, — u1))du]dtr (75)
1=1 i=1 k=1 " Ui

If we use the pure Heaviside function H instead of (more realistic) modification H the quantity
q(ay;, by;)(u1) is replaced by

ny

q(@i bui, 6t1) (wr) := Yo > H(azh — wa) H (ur — brax) (Stur)- (76)
k=1
Since
1, bur <up < apg

H(ayir, — u1)H (w1 — b)) = { 0 otherwise

in the case of the pure Heaviside function the dose D(z,a, b, §t) can easily be computed as follows

L N
D(z,a,b,6t) = > Y / hu(, w)q(@s, bri, 0ty) (ug ) du
1=1 i=1 " Ui
L N ny
= ‘I’OZZZ[/ h(z, w) H (arir — ua ) H (ur — bigk )| (6t1x ) du
1=1 i=1 k=1 " U

L N ny us ;

= ) Y D /_i hu(z, w) H (arir — w1 ) H (w1 — bir )du] (61 )

1=1 i=1 k=1 Y ¥2,i-1
L N m arix  pu2;

- WSS ([ et s -
=1 i=1 k=1 brix U2,i—1

The substitution of (77) for D(z,a,b) in the above object functions (53), (66) and (67) gives expressions
suitable for computations.
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5.2 Dose calculation using a convolution kernel

Here we give an example how the dose function can be explicitly calculated. We consider a (semianalytical)
convolution kernel and multiple static collimation.
From (75) we recall that (approximately)

L N n

(a:,a b 6t) =Yg ZZ Z / hl iL' u (H(alzk - Ul) — (blzk — ul))du]étlk (78)
=1 i=1 k=1
Choose a convolution kernel given in [23, 24]
> 2
h(z,u) = I(x3 JZI ﬂ-oj —((z1—u1)?+(z2—u2)?)/0j(23) ] (79)

This kernel is corresponding to the situation where the origin of the patient coordinate system is in
the point O; marked in the figure 2 and where the z3-axis is along the line S;0. By transforming the
coordinate system due to this situation and including the rotation of collimator we find that the kernel
of the field S; becomes

hu(w,w) = I((Aiz)s) Z o (o

where

A& = Ra, ()7 Raa(Bi + 5) ™ Rag(a) ™ (& = 00"

where T refers to the transpose of a matrix and where R;;, j = 1,2, 3 are the standard rotation matrices

(126)).

The kernel does not take into account the beam divergence and the tissue inhomogeneities. In addition,
the kernel neglects the real patient geometry. It can be applied only for planar patient surfaces and
the straight line OS; must be orthogonal to the patient surface. However these shortcommings can
be corrected by considering individual pencil beams. These corrections are not essential here. The
parameters I(zs), ¢j, oj(r3) are tabulated in literature ([23]). I(z3) can alternatively be calcutated
from

I(zs) = [dy + da(paws)]e™"*°

where parameters di, ds, u, g are tabulated ([23]).
Furthermore choose ~
H(z) = erf (z). (80)

Since for a < b

b
/ e @4y = \frr(erf, (b — z) — erf, (a — 2))
a

and for all b1 < a1 < as < be and 7 small enough (see Lemma 1 in APPENDIX)
bo
/ e (@v)?*/ (erf,(az — v) — erf (a1 —v))dv = /7o (erf ,(as — x) — erf (a1 — 7)) (81)
b1

where p = v/o2 + 72 we find that (approximately)

L N np

D(z,a,b,0t) = T > Y Z i I((Aiz)s)

=1 i=1 k=1 j=1
lerf, (Arz)s) @ik — (A1z)1) — erf, ((a0)5) (Brik — (A1z)1))] (82)
lerfo; ((ara)s) (Ua,i — (A1)2) — erfo (a10)s) (U2,im1 — (A12)2))]0tk

where p;(z3) = \/0;(z3)? + 72.

14



5.3 Polynomial and Fourier basis v,

Here we give some examples how to choose the basis {¢;| j = 1, ...,r} for the replacement (7). We deal
with two possibilities, polynomial basis and Fourier basis. The advantage of these choices is that e.g.
in multiple static collimation the expression q(@;, by, 0t;) (and hence ¥;; and some of the above object
functions) can be explicitly calculated. It suffices to consider one field and so we omit the subscript I.
We shall give only shortly the results because the detail computations are not essential here.

A. Polynomial basis. In this case we choose

=> dja’. (83)
=0

Let a = (a1, ...,ap) € N} be a multi-index and let || = a3 + ...+ ap and al = aq!- - a,! for o € N}. In
addition we denote (as above) @; = (aj1 -~ ain), b; = (bj ---bip) and

B(t) = ($1(t) - $n(t), =¥ = 27" -2y

for o € Ny and z € R”.
We have obtained that

T Ji J2

q(@i, bi) () / Qi ul,t)dt—woz SN i @iy biud (84)

Jj1=0 j2=0 v=0 u=0
where

Piviswran @) = > 3 didj, (Jl> <JH2) al (]Zﬂ_'#)

la|=v|B|=j2—p

T
(—1)d v nga e ( / 3 (03 (o). (85)

X

The expressions pj, j, »..(@;,b;) are multipolynomials with respect to (a;, b;) in R2".
For the above given steplike basis ¢ = xr we have

Pivgaon@5.8) = dydi (1) (2) (-0 St o), (50
k=1

Hence the quantity ¢(@;,b;) or q(a;, b;, 6t) can be immediately calculated from (85-86). We recall that in
the case of steplike basis also the constraints can be computed.

B. Fourier basis. We assume that [—a,a] = [-7,7]. The more general situation can be straightfor-
wardly reduced to this case by an elementary coordinate transformation. Hence we choose

- Z d;exp(ijz) (87)

where M € N and i is the imaginary unit. We have obtained that

M M

q(@;, b;) (u1) / Q(ug,t)dt = ¥q Z Z dj, dj,expli(j2 — j1)u1]

J1=—M jo=—M

T n
/0 [T exp(Graie — jabie) e (D). (88)

k=1
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In the case of steplike basis ¢ = xr we have

M M n
@i, b, 0t)(w1) = T > > > djdjexpli(a — j1)u]

i M jo——M k=1
x  expli(j1air — J2bir)](0tr) (89)

and then ¢(a;, b;) or q(a;,b;,dt) can be computed from (88) or (89). The constraints are considered as
above for the steplike basis ¢y.

6 Optimizing algorithms and simulations

In real situation the number N of leaf pairs is typically 20 — 25. Assuming that the number of fields is
L = 3—10 and that the number n of subfields, is between 5—10 we find that 2N (n1+...+n) = 600—5000.
Hence the above problem is a large scale optimizing problem. The constraints are mainly linear inequality
constraints. The object function F is defined in a subset of R2NV(mi+--+nL) and it is nonlinear. So
the optimizing algorithm must be chosen so that it is specified for nonlinear optimizing problems with
constraints. In addition, the large dimensionality of the problem must be taken into account. The
algorithm must be carefully initialized (all possible apriori information must be taken into account) or it
must have a capability to search global extremums. Here we consider the problem by applying the first
alternative.

6.1 Choice of collimator angle. Initialization of optimization for multiple
static collimation

At first we calculate relevant initial values for the locations of multileaf parameters (a,b) and for the
lenghts of subfields d¢ to ensure that the solution is close to the global minimum of the object function
F(a,b,dt). In addition we select the collimator angle according to some criteria optimally. We suggest
the following procedure which is divided into four subsequent steps.

1. Choose the collimator angle ”optimally” and take into account the leaf constraints. The collimator
"sees” only the 3-dimensional orthogonal (field’s eye view) projection of the patient domain onto
the transversal collimator plane. For each field S; there exists an unique minimal rectangle U; :=
[a},ab] x [b},b4] C U inside which the projection of the patient domain is situated (figure 3). The

minimal rectangle and the locations of leaf heads are dependent on the collimator angle 6.

Set the collimator leaves most conformally for PTV. Figure 4 illustrates this step. Denote the
locations of leaf heads corresponding to the angle 6 by

(a(8),b(8)) = (a11(8),...,a1n(0),...,ar1(0),...,arn(8),
511(8), oo Bun (0), oo b1 (6), -, b (6)). (90)

For each field the optimal selection of the collimator angle could mean that e.g. the following facts
are taken into account

(a) Rotate the collimator such that the u;-side of the minimal rectangle is minimal. This choice
diminish the movements of leaves. In addition this choice may improve the benefits of back up
diaphragms to decrease the leakage between the leaves. The proposed choice is not necessarily
the best one (cf. [22]). For this option we set the penalty term

f1(6) = Cl(lgian bii(0) — max ai(9)). (91)

16



OAR

Figure 3: The orthogonal projection onto the collimator plane of the 3-dimensional patient data corre-
sponding to the field S;. The minimum rectangle U; is shown.

AN

//

L

Figure 4: The conformal setting of leaves corresponding to the field S;. Ujs is the region between the
multileaf steplike outline corresponding to subfield S;3.
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(b) Minimize the area between the outline of PTV and the multileaf steplike outline. By minimiz-
ing this area we improve the conformality. For this option we set the penalty term

£2(8) = e2( Y (ai(6) = bui(6))d — A).

1<i<N

Here 3, ., < n(@1:(8) —bi3(6))d is the area inside the multileaf steplike outline and A is the area
inside the PTV outline. Since A is independent of § we can replace f2(6) by

F2(0) = ca( D> (a(B) — bu(9))). (92)

1<i<N

(c) Take into account the leaf constraints. We penalize if the leaf constraints are violated and
then we put the following penalty term (note that the physically impossible constraints (55,
56) are omitted)

f0) = Z(maX(O,—(azi(a)Jr"é))” (93)

N
+ o Z(max(o, bii(6) — k)P

=1

N
+ co Z(maX(O, —(a1i(8) — bii(0))(aui (0) — bui(0) —7)))”

N
+ or Y (max(0,ai(6) — aj(6) — 7))

N
+ sy (max(0,bi(8) — bi;(6) — 7))

i.j=1
N-—1

+ o Z (max(0, b;(0) — ay(i+1)(0)))"
N-1

+ o Z (max(0, by(i+1)(0) — ai(6)))*.

i=1
Above p is a positive integer.

(d) Save the critical organs and the healthy tissue inside the PTV. Simultaneously minimize the
area of PTV covered by MLC. We omit this option here.

(e) Other criteria, e.g. take into account the dose gradients (cf. [22])

The choice of collimator angle for an individual field S; is the solution of the extremum problem

min ](fl (6) + f2(0) + £3(0))- (94)

6€[0,2m

After this step the leaf settings are

(50,60) = (6(1)1,...,a(l)N,...,&%l,...,&%N,i)gl,...,E?N,‘..,I;%l,...,E%N)
(a(bo), b(6o)) (95)

where 6 is the minimum point of (94).
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7777

Figure 5: The setting of leaves during the subfields Sy, k = 1,2. Uy, k = 1,2 are regions between the
multileaf steplike outline.

2. To save the critical organ C inside the projection of PTV we suggest the following method. Suppose

that each field S; contains (at most) n; subfields Sy, k = 1,...,n;. Let 0 < my < n;. During the
subfields Six, k = 1, ...,y put the leaves subsequently as illustrated in figure 5. During the subfields
Sik, Kk =my;+1,...,n; put the leaves as in step 1. Take into account the leaf constraints. If some
of the leaf constraints would be violated use as well as possible settings such that the constraints
are not violated.
In the following we consider a special case which can be applied for the critical organs with serial
structure. We assume that n; =3, [ = 1,...,L and m;y = 2, [ = 1,...,L. The leaf configurations
of the first two subfields Sj1, Sj2 are illustrated in figure 5 and during the last subfield S;3 the leaf
configuration is as in figure 4.

Denote the lenghts of the subfields Sy, k£ = 1,2,3 by ;.. We seek a feasible solution for the lenghts
01, as follows. Let Uy, be the open fields corresponding to the subfields Sy, (see figures 4 and 5).
Furthermore, let the corresponding leaf locations be

0 0 0 0 0 0 0 0
(allka'--:alNka---:ale:---JaLNkallk;---:blNk:---able:---JbLNk)

Denote (as above)

0 _ (0 0 0 70 _ 40 10 30

ay; = (ag31, Aginy ags)s by = (brins bpios byis)
and

—0 —0 —0 —0 30 70 70 70
(0, D0) = (@115 oy Q1N oy QL1 ooy BN D115 ey D1 Ny oy D1y ooy D)

We omit the above mentioned corrections in dose calculation. We calculate the dose per unit time
and corresponding to this open subfield by

Dy (z) = g hi(z,u)du (96)
Uik

(see (77)). Here we use the convolution kernel h;(z,u) of section 5
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As in section 5.2 we obtain that the dose per unit time of these subfields is

N 3
Di(z) = WY > cI((A)s)

i=1 j=1

lerfo, ((ara)s) (@i, — (A12)1) — erfo (a,2)5) (i, — (Ar12)1)]

lerfo ((A12)s) (U2,i — (AiT)2) — erfy ((a,2)5) (U2,i-1 — (AiT)2)].

Hence the total dose is .

D(z) = Z Z Dy ()6t k-

1=1 k=1
We use the notations of section 4.2. Assume that
Jr={1,...,mai}, Jo={mi1+1,...,ma}, J3={m2+1,.., P}
The feasible problem requires
dr <D(zp) <Dr, p=1,...,m
D(z,) < D¢c, p=mq1 +1,...,m9
D(zp) <Dy, p=m2+1,...,P

and naturally
0 <oty <T.

The problem can be written in the matrix form
H(x)dt <b
where H(x) is (P +my + 6L)) x (3L))- matrix
H(x)= (H(x) -11),
where T refers to a transpose of a matrix. Here I is the (3L x 3L) unit matrix and
H(x) = (Hy(x) -+ Hg(x))

where

Dy (z1) D3 (z1) Dy3(z1)
Du(em) Du(@m) Dis(em,)
—Dj1(z1) —Dya(z1) —Dy3(z1)

Hx) = | Pn@m) —Do(@m)  —Di(em)
Dy (zmi+1) Dip(Tm+1) Diz(Tmi41)

Di(m,)  Dia(®Tm,)  Diz(Tm.,)
Di(Tmy+1) Diz(Tmy+1)  Diz(Tmy+1)

DU(CEP) DIQ(.TP) DIS(:EP)

St=( 6ty Oty Otis --- Otpy Otps Otps, )
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b=(Dy -+ Dy —dp -+ —dy Do -+ Dc Dy -+~ Dy 0 @)

Here 0 = (0, ...,0) € R* and where q = (T, Ty, Th, ..., T1,, Tr,, T1,) € R*L. Here T; may be e.g.
Since for the open field the connection Dy = ¢T is known we can calculate T'.

The feasible problem (100) is solved by the Cimmino algorithm ([3, 9]). Denote the solution by

T
T

Sto = (0191, 5105, 6195, ..., 619 1,619,519 5) € R3E.
3. If necessary, shield the healthy tissue N inside the projection of PTV as in step 2 the OAR was
shielded.

4. The initial point is
(ag,b0,5t0). (102)

In the actual optimization we put (to save the conformality) the additional constraint
aik < @y, buik > by; (103)

forl=1,..,L, i=1,....N, k=1,2,3. The constraints a;;x < a, b;r > —a can be removed.

6.2 Search of feasible solution for the linearized problem

In this contribution we apply the feasible solution approach (Problem II of section 4.2). The actual
optimization is also solved by the Cimmino algorithm. At first we linearize the dose function D(z,, a, b, 6t)
at the initial point (ag, b, dtg) that is

(a—ag)T
D(il,'p, a, b, (5t) ~ D(Il?p, ao,bo, (5t0) + JD(.’Ep, ao,bo, 6t0) (b - bo)T
(6t — 6t)T
al
= f(mp,ao,b0,5t0) + JD(ZL'p,ao,b(],ét(]) bT (104)
5T

where Jp(zp, a0, bg, dtg) is the Jacobian matrix of D(zp,a,b,dt) with respect to the variable (a,b, dt).
Since the dose function D is real valued we in fact have

aT

JD(xp,ag,bo,(sto) bT = <VD($p,ag,bg,(5t0), (a,b,5t)).
5ttt

Denote f, := f(zp, a0, bo, dtg)
The corresponding feasible problem states:
Find (a,b,dt) € RENLT3L for which the inequalities

T
a
dT_fp SJD(mpaaOabO:(StO) bT SDT_fp; pE Jl: (105)
otT
aT
JD(xp:aﬂab():étO) bT S DC - fp7 D S J?: (106)
otT
aT
Jp(zp,a0,bo,0t) [ bT | <Dy —f,, p€ Js, (107)
5tT

are satisfied under the constraints (55-60) , (71) (or (72)) and (103).
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We remove the nonlinear constraints (58) and (72). If we took into account these constraints we ought
to linearize them at the initial point. The feasible solution (105-107) with the mentioned constraints can
be solved with the Cimmino algorithm as above. We omit the detailed formulations since the principles
are presented in the previous considerations. However, we mention that the additional constraints

0 0
app — K1 S A < Qg + K1

b?ik — k1 by < b?ik + K1
St — Ko < Sty < S0 + Ko

are required, where k; and ko are so small that the feasible solution of the original nonlinear problem
(62-64) is expected to achieved. Since the original problem is nonlinear it is recommended that the
linearization point is changed after some iterations. The new linearization point is the solution obtained
in the previous iteration.

The dose volume constraints can also be taken into account in this optimization method. We omit
details here.

6.3 Simulations

In simulations we studied the introduced methods. The combined triple Gaussian pencil beam kernel
(section 5.2) and MLC scatter model (section 3.1) were used in the solution of the inverse problem of
radiotherapy treatment planning. In the inverse problem both leaf positions (a, b) and irradiation times
ot were solved to get a feasible dose distribution.

The course of the solution of the inverse problem is as follows.

1. Place treatment fields and give dose limits for PTV and OAR.

2. Determine initial leaf positions using patient geometry (section 6.1). Also the number of subfields
is decided.

3. Compute the dose deposition kernel (101) for the determined subfields using triple Gaussian pencil
beam and MLC scattering models.

4. Find a feasible solution for the irradiation times dt¢ of the subfields (cf. [9]).
5. Check the solution. If it is good enough, stop.

6. If the solution is not satisfactory, solve the system of nonlinear inequalities for leaf positions and
irradiation times using the linearization in Cimmino algorithm as described in section 6.2. After
each iteration check whether the solution is good enough. If not, go to next iteration round.

In the last step of the solution process at each iteration the modifications of the leaf positions are solved
first and after this the irradiation times are determined according to the changed leaf patterns. This is
because of the linear character of §¢ and nonlinear character of a, b.

One PTV — OAR situation was studied. A C-shaped PTV was partly surrounding a smaller OAR
(figure 6). Concave dose distribution was demanded. The PTV and the OAR were in a box-shaped water
phantom.

Two and five fields were used. One of the two fields had gantry angle 0 degrees and the other 152
degrees. Five fields were equiangled, coplanar and isocentric. Field sizes were governed by the PTV
projections in the field determination planes which were placed at the isocenter orthogonally to the
central axes of the fields. The photon energy for the fields was 6 MV as the parameters needed by the
triple Gaussian dose calculation model are tabulated in [24]. Collimator angles of the fields were not
optimized. The number of leaf pairs was N = 3 in both simulations.

Dose constraints were same in both cases. Relative dose in the PTVs was limited between 95 — 110
% and in the OARs under 60 %. The PTV lower and the OAR higher limits were weighted twice the
amount the higher dose constraint of the PTV.
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PTV

OAR

Figure 6: The phantom that was used in the simulations.

The MLC has technical constraints. In these simulations the virtual MLC had the following limi-
tations: Leaves could not move outside the field (56), leaves were not allowed to collide (55) and the
interleaf situation (59) was prohibited.

Figure 7 shows the results of the inverse solution for the first case and figure 8 for the second. Better
conformation, of course, is obtained using five fields. Notice that the dose to the rest of the phantom
(normal tissue) was not constrained. Both cases were run 10 iterations; after this the solutions did not
improve significantly. In the two-field simulation the minimum and maximum dose in the PTV were 80.1
% and 120.5 % respectively. The highest dose in the OAR was 75.4 %. In the five-field case the minimum
and maximum in the PTV were 90.4 % and 113.5 % respectively. The highest dose in the OAR was 66.0
%.

7 Conclusions

In the present study we have suggested one model to control the leaves of MLC. In addition we have
expressed the idea how the inverse treatment planning in radiation therapy can be done directly by
controlling the leaves of MLC. The study is preliminary and there are many details demanding more
study and improvements. Especially the applied optimizing (computational) algorithms must be further
developed. The application of so-called global optimization algorithms and the initialization as accurately
as possible are helpfull in the optimization.

In this contribution we applied the initialization based on the geometrical intuition. The other alterna-
tive for the initialization is to determine an approximation for the intensity and set the leaves according
to this information as described in [20]. This initialization method will be studied in the subsequent
research.

The simulations were done in reduced dimensions (that is reduced values of N) but the generalizations
to real dimensions are straightforward. In real dimensions the computational complexity will increase
and our aim is to develope more effective computational tools for this case. Furthermore the head scatter
and leakage effects must be included to the model more accurately.

It is obvious that applying MLC using multiple static method we can not produce arbitrarily shaped
intensity modulations. We will in the future develope and test the control of the MLC in the inverse
problem. Our method ensures that the MLC constraints are properly taken into account when the
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Figure 7: Dose distribution in a transversal plane in the two-field case. Isodoses represent the dose.

20

18

cm

14r

12F

8 10 12 14 16 18 20 22

Figure 8: Dose distribution in a transversal plane in the five-field case. Isodoses represent the dose.
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inverse problem is solved. Moreover the head scattering, leakage and groove and tongue effects can be
more accurately modelled when we optimize directly the MLC parameters.

In this (and previous) papers we have introduced some of the mathematical tools needed to create
intensity modulated treatment plans. There are however two major parts of our inverse method that need
to be thoroughly tested before the method will be applied into practice. The first is the approximation
for the dose deposition kernel h;(z,u). The second is the head scattering and leakage model that will
replace the Heaviside function.

We have implemented the multiple static treatment technique. Modifying our model there are also
other kind of possibilities to deliver the dose, e.g. the dynamic collimation. In the dynamic collimation
the limited velocity and acceleration of leaves bring up restrictions. We skecth how our algorithms can
be modified to include dynamic delivery techniques.

In the cases where the velocity of the leaf trajectories contains limitations we assume that the velocities
va(t), vp(t) of opposite leaves (say A and B) can be expressed as linear combinations

n

va(t) = ardi(t), va(t) = > bedw(t)
k=1

k=1

with respect to a suitable basis {¢1, ..., ¢, }. Then the leaf trajectories a(t) and b(¢) can be obtained as
integrals

a(t) = ap +/0 va(r)dr = ap + ;ak /0 o (7)dT, (108)
bt)=bo+ | ve(r)dr=0bo+ » b o (T)dT. (109)
/ D], o

Substitution of (108-109) in the place of a(t) and b(t) in the above theory ables us to express the control
of leaves with the help of ”velocity parameters of leaves”.
The limited velocity means restrictions of the form

1> andr ()] <var, |Y brdr(t) < wvu, t €[0T (110)

k=1 k=1

for the parameters ag, by, £ = 1,...,n. The unidirectionality of e.g. A-leaf can be obtained by choosing
the positive basis functions ¢ and demanding that ar > 0. For steplike basis the restrictions (110) are
easy to handle. With the same kind of modifications the limited acceleration of the leaves can be taken
into account.

The other possibility to take into account the limitations of velocity (and acceleration) is to assume
that the basis system ¢y, for leaf trajectories a(t), b(t) is (twice) differentiable. Then va(t) = a'(t) =
i1 ar¢}(t) and similarly for the B -leaf. For example, the limited velocity of A-leaf means the
restriction | Y p_; ap¢}(t)| < var,for each t € [0, 7.
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9 APPENDIX

Lemma 1 Let by < a1 < as < by and let T be a small positive number. Then
b2 2 2
/ e~ @/ (erf (ay — v) — erfr(a; —v))dv

b1
~ y/mo(erf,(as — z) — erf, (a1 — z)) (111)
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where p = /o2 + 12.
Proof. Since erf; approximates the Heaviside function when 7 is small we find that
b2 2 2
/ e @Y (erf_(ay — v) — erf (a; —v))dv
b1
~ / e~ (@—v)*/e? (erf,(as —v) —erf (a1 —v))dv. (112)
The approximation in (111) is due to the approximation (112) only. We have to show that the right hand

side of (112) is equal to the right hand side of (111).
Denote

I(ag) := / e_(w_U)Q/"QerfT(ag —v)dv (113)
—0o0

and
fw 0(1)) = e—(z—v)2/a2

gr(v) :=erf(v).
Then we find that ~
I(as) = /_ Frro (0)g- (@ — v)dv = V2R(f1 5 * g7)(a2) (114)

where * refers to the convolution and where /27 is a scaling factor. Hence we obtain for the corresponding
Fourier transforms (in the sense of tempered distributions, see e.g. [21])

I=V2rfes g (115)
From standard mathematical tables we see that the Fourier transform fw, is

GE %e’m’("@”“ (116)

Since g, (v) = ﬁe”ﬁ/’ﬂ and since g;’T(f) = 1€, we find that

1
- V2mig
for all £ # 0. Combining (115, 116, 117) we get for £ # 0

§:(¢) e (TO%/4 (117)

R o . 2 1 2
I = Von——e #z—(a8)"/4__— —(r8)"/4
2° Vamie"
= Vroe g, = /rog,((-) — x) (118)

—

since e %%§, = g,((-) — ). In the second step we applied (117) replacing 7 with p. The assertion follows
from (118) by taking Fourier inverse transforms.
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