Approach to Document Structure
Transformations

E. Kuikka, P. Leinonen, M. Penttonen

Report A/1999/7

ISBN 951-781-615-4
ISSN 0787-6416

UNIVERSITY OF KUOPIO

Department of Computer Science
and Applied Mathematics

P.0.Box 1627, FIN-70211 Kuopio, FINLAND

An Approach to Document Structure Transformations

Eila Kuikka
Department of Computer Science and Applied Mathematics
University of Kuopio
Eila.Kuikka@cs.uku.fi

Paula Leinonen
Department of Computer Science
University of Joensuu
pleinone@cs.joensuu.fi

Martti Penttonen
Department of Computer Science and Applied Mathematics
University of Kuopio
Martti.Penttonen@cs.uku.fi

Abstract

We characterize a class of structure transformations, called dense, hierarchic and local
transformations, that can be efficiently implemented by a two-phase, semi-automatic pro-
cedure. In the first phase of our method, corresponding substructures are searched by an
interactive procedure. In the second phase, the replacement of substructures is automatized
by generating a tree transducer implementing it.

1 Introduction

Nowadays documents are produced in electronic form and often published in several formats using
several applications. For example, in addition to a paper version, an HTML version can be pub-
lished on the Internet. Because of several storage and formatting schemes in applications, there
is a need to transform the format of the documents. If the logical structure of the document is
marked, it may be possible to define an automatic transformation of the format or the structure
of the document.

There are various transformation systems implemented in an ad hoc manner for transforming
the format between two known presentational markups. For example, latex2html [Dra98] converts
BTEX markup [Lam86] to HTML. In many commercial systems there are tools for converting
documents to HTML or SGML. However, often the user has to make the whole conversion or
complete some automatic processing manually. If the structure of the document is defined using
a grammar, tree transformation methods can be used for the structure transformations. The
extended Backus-Naur Form (BNF) of the context-free grammar is suitable and widely used for
defining the structure of the documents. The Standard Generalized Markup Language (SGML) is
an ISO standard [ISO86] that provides the notation for defining the textual markup systems. This
kind of markup system can be specified by an extended context-free grammar [KW97].

Some study about general structure transformations of documents has been done, but not many
applications exist. Furuta and Stotts specify the problem in [FS88]. Akpotsui and Quint use a
comparator tool to compare two grammars for creating conversion rules, which are used by a con-
verter. No algorithm for the comparator tool has been provided. For a structure transformation
between two closely related grammars, there are some systems based on a syntax-directed transla-
tion, like SYNDOC [KPV94, KP95, Kui96|, HST [KLMN90], Integrated Chameleon Architecture
(ICA) [MOB94] or the system of Chiba and Kyojima [CK95]. However, the syntax-directed transla-
tion is quite restricted. Attribute grammars [FW93] and tree transformation grammars [KPPM&84]
are used in structure transformations for increasing a power. A tree transformation grammar is an
extension of a syntax-directed translation schema (SDTS). It describes an association between the
source and the target grammars. In addition to defining an association between the nonterminals,
the user defines an association between groups of productions. The tree transformation grammar
is not restricted to a single level in a parse tree like the SDTS is.

SYNDOC is a research prototype for a syntax-directed document processing system, in which
the document is considered as a tree structure in all phases of processing. The user defines the
structure of a document with a skeleton grammar and the document instance is a parse tree of the
grammar. Formatted documents are created from a parse tree using syntax-directed translation
[AU72]. SYNDOC provides a simple facility for transforming documents — documents can be
transformed to another format if the structure does not change or changes only in the limits of
the SDTS. Omissions and additions and changes of order are allowed, but deeper changes are not
possible.

Our aim in this work is to develop a semi-automatic procedure for defining an automatic
transformation from a structure defined by one grammar to the structure defined by another
grammar. This is an incremental procedure, where the transformation is defined by example
documents in dialogue with the system. The completeness of the procedure is guaranteed by
characterizing a sufficient set of examples, called characteristic trees. In Section 2, we define some
concepts related with the syntax-directed approach to document processing. In Section 3, we
develop a procedure for the transformation of a parse tree to another. Section 4 describes how
transformation rules are expressed as rules of a tree transducer. Finally, Section 5 summarizes the

work and discusses future developments.

2 Structured documents

In documents there is a content but virtually always also some other information about their
formatting or structure. The formatting instructions for a document are called a procedural markup.
A declarative markup describes the logical, hierarchical structure of the document. Documents
with a declarative markup can be used directly in textual databases, or their format or structure
may be possible to transform automatically. The structure definition can also help the writer
through the writing process, if the text-processing system supports structures. SGML is a widely
used international standard for describing the structure of a document. DSSSL (Document Style
Semantics and Specification Language) [Cla96] is a standard for describing the formatting of the
structured text. This chapter summarizes the principles of grammar-based document processing
by considering a syntax-directed approach. First we will provide some definitions.

A context-free grammar [AUT2] is a quadruple G = (N, X, P,S), where N is a finite set of
nonterminals, ¥ is a finite set of terminals, P is a set of productions of the form A — «, where
A€eNand a € (NUX)* and S € N is the start symbol.

The rules of the grammar are used to derive documents. Such a derivation is expressed with a
derivation tree as follows. The initial symbol S of the grammar is represented by a node labelled
with S, that will be the root of the tree. In the beginning, when no rules have been applied, S is
also a leaf of the derivation tree. Later, when a leaf of the tree is labelled with a nonterminal A,
and there is a rule A — 2125 ...z, where z; € NUX (i = 1...k), the derivation tree is extended
with new leaves labelled with z1,zs,...,z; that a connected to A, which becomes an internal
node. Sometimes the concept of a parse tree is used to emphasize the opposite of the derivation,
a parsing according to a grammar.

With the text-processing system the user should be able to create, update, save and retrieve
the documents and format them for delivery. Most present-day text-processing systems are based
on the procedural approach. The user writes the contents of a document mixed with formatting
instructions. Usually the elements of the documents, such as chapters, sections and figures are
explicitly numbered, spaces between elements are fixed, and character types used for emphasizing
are chosen. After adding or deleting some content element of the document, the user has to check
whether the change has affected the numbering, references or other layout information and update
it, if needed. However, for the writer of the document the idea of the text content should be most
important, not the layout of the document.

In the syntax-directed approach to text processing a grammar describes the structure of the
document, and a document instance is a parse tree of the grammar. Document processing based
on a declarative definition of the structure can be considered to be an analogy of the compiling of
programs. The input text is a “program” written in one language and the output text a “program”
written in another language. The translation from the input text to the output text is divided into
a syntactic and a semantic translation. The syntactic translation isolates the structured content
from the input according to a source grammar. Its result is a parse tree which represents the logical
elements and the syntactic relationships between them. The semantic translation adds formatting
commands between the leaves of the parse tree according to the target grammar and generates the
output text from the parse tree. If the logical structures of the source and the target grammars
differ, text processing needs an extra phase. In addition to the two phases described above, the
intermediate representation, the parse tree is transformed to follow a new structure.

The syntax-directed translation is widely used in structured document processing systems. The
SYNDOC system [KPV94]| defines the internal structure of the document with a skeleton grammar.
Next example is a skeleton grammar of an article type of document.

article -> authors [date] title content.
authors -> (author)+.

author -> text.

date -> text.

title -> text.

content -> abstract (section)+.
abstract -> text.

section -> heading (paragraph)+.
heading -> text.

paragraph -> textpara.
paragraph -> itemizelist.
itemizelist -> (itemize)+.
textpara -> text.

itemize -> text.

Often it is useful to have special kinds of nonterminals called content nonterminals. These nonter-
minals do not have productions in the grammar, but they refer to the contents of the document.
In the grammar above, nonterminal text can contain any sequence of characters. Usually the
content nonterminal is the only nonterminal of the right-hand side of the production, and hence
does not have siblings in the parse tree. The other nonterminals, having applicable rules, are called
structure nonterminals.

In the current version of the SYNDOC system, the source grammar is identical to the skeleton
grammar. It could, for example, use terminals for providing information to help the user in the
writing process. The target grammar is created from the skeleton grammar by adding terminals
to it. In the input phase of text processing there is an editor that uses the source grammar to
prompt the structure elements to the user. The internal representation of the document is the
parse tree of the skeleton grammar. The output of the document is generated from the parse
tree for the skeleton grammar to an external representation for the target grammar using simple
syntax-directed translation.

3 Associations in structures

Tree transformation methods are suitable for structure transformations of documents that have
an extended context-free grammar as a structure definition. The tree transformation should be
determined using the grammars for the source and for the target documents and the method should
be automatic, or at least semi-automatic.

In this section we present a semiautomatic procedure for transforming a structure of a docu-
ment from one grammar to another. A source grammar G5 and the document instance which is
generated from this grammar, as well as a target grammar G, exist. The user defines the corre-
spondence between the old and the new structure. This is done in two phases. In the first phase,
the correspondence between structure elements, called label association, is determined. The second
phase is more elaborate. There substructures of the source document are mapped to the substruc-
tures of the target document. This phase is an interactive dialogue with the user and the system,
and the outcome is what will be called tree association.

3.1 Characteristic trees

We use a concept of characteristic trees for defining an application of the label association to
infinite amount of parse trees of the grammar in a finite manner.

We call elementary trees the set of derivation trees that have the start symbol S of the grammar
as the root, terminals, empty string e or content nonterminals as leaves, and no nonterminal
occurring twice in any of the paths from the root to a leaf. We call pumping factors the derivation
trees that have a nonterminal as the root and the same nonterminal as a leaf (or many leaves)
and this is the only case when a nonterminal occurs twice on a path from the root to a leaf.
Characteristic tree is the common name for elementary trees and pumping factors.

It is easy to see that

Lemma 3.1 1. For any context-free grammar G4 the set of elementary trees and the set of
pumping factors are finite.

2. Each parse tree can be decomposed to a elementary tree and a set of interleaved pumping
factors.

3. All trees that are formed by interleaving pumping factors to elementary trees are parse trees.

Because parse trees consist of characteristic trees and tree transformation can be made in parts,
an automatic transformation for all parse trees can be derived from the transformation definition
between characteristic trees of the source grammar and corresponding structures of the target
grammar. The characteristic trees derived from the source grammar of Figure 2 are described in
Figure 1.

3.2 Label association

A label association is a relation h from the set Ny of the nonterminals of the source grammar G to
the set NV of the nonterminals of the target grammar G;. Relation h is not necessarily a mapping,
because the member n of the domain Ny, may have several images in the range N;. The concept
of the label association is used to show semantic similarity between the corresponding structure
elements of two documents by associating the corresponding nonterminals of the source and the
target grammars. For example, the nonterminal name of the source grammar is associated with

Figure 1: Characteristic trees of the source grammar

the nonterminal author of the target grammar, if the meaning of the element name in the source
document corresponds to the meaning of the element author in the target document. If the asso-
ciated nonterminals in two grammars have identical labels, the label association can be generated
automatically, otherwise the user has to give the association between the nonterminals of the source
and the target grammars. The label association alone does not determine the transformation but

front

P

authors title abstract

N\

corr_aut hor aut hor*

€

aut hor *

T~

aut hor aut hor *

it helps to find matching substructures.

Figure 2 describes structures of the front parts of two articles. The label association between

these grammars is described in Figure 3.

Source grammar:

front ->
authors ->
title ->
abstract ->
corr_author ->
author ->

Target grammar:

front ->
authors ->
intro ->
title ->
shorttitle ->
corr_author ->
author ->
keywords ->
abstract ->

authors title abstract
corr_author (author)=*
text
text
text
text

title shorttitle authors intro
corr_author (author)*
keywords abstract

text

text

text

text

text

text

Figure 2: The source and the target grammars

front
title
shorttitle

corr_aut hor aut hor s

aut hor
title

corr_aut hor

abstract

Figure 3: Label association of grammars

3.3 Tree association

Corresponding structures of the target grammar for the characteristic trees of the source grammar
are derived by starting from the nonterminal of the target grammar which is associated with the
start symbol of the source grammar. If there is only one rule for all the nonterminals of the target
grammar, at most one corresponding structure tree for every elementary tree or pumping factor of
the source grammar will be generated. This can be done automatically by starting from the root
and continuing until the leaves are content nonterminals or empty strings e. If there are several
rules for the nonterminal n; of the target grammar, the selection of the rule may be possible to do
automatically if only one rule ny — n¢,, ny,, ..., Ny, contains associated nonterminals with the rule
Ng —> Mgy, Ngy, -, Ns, Of the source grammar which is used in the characteristic tree and in which
ng is associated with the nonterminal n;. Otherwise, the user selects a suitable rule.

Consider two grammars Gs and G and a label association between these grammars. A tree
association is a relation between the nodes of a derivation tree by grammar G and a derivation
tree by grammar Gy such that the labels of related nodes are related in label association. The tree
association is only meaningful when comparing the derivation trees of the same document by two
grammars. If the grammars are structurally identical, the tree association is a bijective mapping.
If the grammars are very different, the tree association is very partial and there is no obvious
transformation of the document structure. Note that our definition allows even an empty relation
being called a tree association. Such a tree association is, of course, useless from the point of view
of transformation.

We say that a tree association h is hierarchic if for any x € h(u), y € h(v), if v is successor of
u, y is a successor of z. A tree association is dense, if there is a constant ¢ such that any non-root
node with a nonempty label association has an ancestor with a nonempty label association within
distance c. A tree association h is local, if there are constants d and e such that for all z € h(u),
y € h(v) such that the distance of u from v is not greater than d, the distance of z from y is not
greater than e.

Intuitively speaking, having a hierarchic and local tree association means that the transforma-
tion can be built top-down with a finite look-ahead in the tree.

Figure 4 describes a tree association between the nodes of the characteristic trees of the source
grammar and the nodes of corresponding structures of the target grammar of Figure 2.

Now we will describe a procedure to build a derivation tree by the target grammar to an existing
source grammar derivation tree so that a label association is respected as much as possible. A

front front

%\ title abstract title shorttitle authors intro

corr_author aut hor* hN corr_author author* keywords abstract

\f-\\ ****** :::‘:{::\\ e /7,//
aut hor * aut hor *

aut hor aut hor * aut hor aut hor *

Figure 4: Tree association

sketch of the algorithm already appeared in [Kui96]. Given grammars G5 = (Ns, ¥4, Ps, S;) and
G = (Ng, 4, P, S) and a structured document T derived by G,. If there is structured document
T; derived by G; and a hierarchic, dense and local tree association between T and T}, they can be

found by the following procedure:
Tree association algorithm.

Given grammars G and Gy, a derivation tree T in G5 and a label association h; such that
the initial symbol of G5 is mapped to the initial symbol of G;.

1 Associate the roots of Ts and T; in the tree association h; and mark them as open
nodes.

2 If there are no more open nodes in T, stop. Otherwise choose an open node n and its
associated node hy(n).

3 Expand the subtree whose root is n until in each branch a node m with a nonempty
association h;(m) or a node without associated descendants in its subtree is found.
(Due to denseness assumption, these nodes are found in bounded depth.) The nodes
in frontier having a nonempty association are marked open, all other generated nodes
and n are marked closed.

4 Expand the node hy(n) in T} so that the open nodes generated in 3 can be associated
in h¢. (Such nodes can be generated in finite time, because there is a hierarchic and
local association.)

5 Go to 2.

Step 4 is nondeterministic, as there may be several ways to expand Ty, some of which may not lead
to the required tree association. However, assuming that there is a hierarchic, dense and local tree
association, it can be found in a finite time by backtracking. In the real implementation the search
is guided by a suitable heuristic function providing “goodness” values for subtree candidates.

4 Automatizing the transformation

In the previous section, an interactive transformation procedure for a document tree was presented,
when it is known that there is a hierarchic, dense and local transformation. The procedure can
be applied to any document tree. However, the system should be as automatic as possible. We
assume that the transformation is deterministic in the sense that substructures are transformed
in the same way in all cases. Then, once the transformation of a structure is fixed, it can be
automatically applied later on. This automatic transformation is formalized by tree transducers.

4.1 Tree transducer

A tree transducer is a tree automaton with an output. It works like a finite state automaton, but
operates on trees, not on strings. It takes a finite labelled tree as an input and produces a finite
labelled tree as an output.

A descending tree transducer [GS84] is a system D = (X, X,Q,A,Y, P,Q"), in which

1. ¥ and A are ranked alphabets.
2. X and Y are the leaf alphabets.

w

. @ is a ranked alphabet consisting of unary operators, the state set of D.

I

. P is a finite set of productions of the following two types:

(a) q(z) = ¢,
(q € Q,Z' € Xat € TA(Y))7

(b) q(a(fla .. 5€m)) - t;
(@€Q,0€%,,m>0,t€ TA(YUQEnR), (&1,---,6m) € Em),
&, ..., &y are auxiliary variables for indicating occurrences of subtrees in a tree.

In the definition, T4 (S) means the set of trees, whose internal nodes are taken from the (ranked)
alphabet A and leaves from the set S. The (descending) tree transducer starts processing the
source tree from the root towards the leaves and constructs the target tree structure by structure.
For the node with associated state, the proper transformation rule is selected and the structure
is transformed according to the rule. The states are inserted into the constructed structure for
defining the unprocessed parts of the source tree.

For allowing more complex structures on the left-hand sides of the rules, we use an extension
which is defined in [GS84]. In the extension a transformation step is applied to a tree and its
hanging subtrees instead of applying it to a node and its hanging subtrees. Furthermore, we want
to allow the addition of atomic nonterminal nodes to a target tree, which according to the previ-
ous definition is not possible. Because of the extensions, the rules are defined and presented as a
term-rewriting system as follows:

P is a finite set of productions of the following two types:
L gq(z) = t,(g€ Q,z € X,t € Ty(Y)),
2. qit") =t (geQ,t’' € TsUE,),m>0,t e TA(Y UQE,, UA)).

10

4.2 Constructing the tree automaton from the tree association

After the tree association is defined, transformation rules of the tree transducer can be generated
automatically from the characteristic trees of the source grammar and associated structures of
the target grammar. The nonterminals of the target grammar Gy = (A,Y,P',S’), which are
roots in corresponding structures of characteristic trees of the source grammar, and the content
nonterminals are associated with the states gx. The left hand side of the rule is constructed from
the characteristic tree of the source grammar and from the state. Thus, the left hand side will be
in the form
q)\(O'(Xl, —eey Xn)) or qA(O'(Xl, —ey O'i(Xj, —ey Xk), . Xn))

The right hand side of the rule is constructed from the associated structure of the target grammar.
It will be in the form

’\(q/\1(X1)7--'JQ/\m(Xk)) or ’\(qx\l(Xl)J"'a’\i(qul(X17"'7Xl)="-)JQ/\m(Xk))'

The leaf nodes of the trees are denoted using variables X;,7 > 1 and the interior nodes are expressed
using their labels.

Figure 5 expresses the rules of the transducer, which are constructed from the trees of Figure 4.
We assign states pl and p2 to the roots front and author of the characteristic trees respectively
and state p3 to the content nonterminal text. The leaves of the trees are replaced by variables
X;, 1 > 1 which correspond to occurrences of content nonterminals.

[pl,front,
p2,author,
p3,text].

1. pl(front(authors(corr_author(X1), (X2)),

title(X3),abstract(X4)))
-> front(title(p3(X3)),shorttitle,

authors (corr_author (p3(X1)),p2(X2)),
intro(keywords,abstract(p3(X4)))).

2. p2(author*(author(X1) ,author*(X2))) ->

author* (author (p3(X1)) ,author* (p2(X2))) .
3. p2(author*(e)) -> authorx(e).
4. p3(text(X1)) -> text(X1).

Figure 5: Rules for a tree transducer

Figure 6 expresses the parse tree of the source grammar of Figure 2 without the content. Initial
state p1 of the transducer is assigned to the root of the source tree.

We use the rules of Figure 5 for transforming the document to be according to the target
grammar of Figure 2. Rule 1 with the initial state p1 is applied first. Figure 7 shows a parse tree
after Rule 1 is applied.

Next we apply Rules 2 and 4 of Figure 5 to corresponding subtrees. Figure 8 shows the output
tree after the rules are applied to the states of Figure 7.

For transforming the recursive structure, rules 2, 3 and 4 are applied until there are no states
left in the result tree. Figure 9 expresses the result of the transformation which is a parse tree
according to the target grammar of the Figure 2.

11

pl
front

T

aut hors title abstract
corr_aut hor aut hor * text text
text aut hor aut hor *
text aut hor aut hor *
text €
Figure 6: Parse tree of the source grammar
front
02 %\
title shorttitle aut hors intro
‘ p3 /\ p2 /\3
t ext cor‘r_aut hor aut hor * keywor ds abstract
text aut hor aut hor * text
\ _—
text aut hor aut hor *
text €

Figure 7: Transformation with tree transducer

4.3 Automatic transformation of documents

How many document trees must be transformed interactively before the system learns to trans-
form all trees automatically? There are different strategies. One approach is the lazy strategy:
Always try the automatic transformation by tree transducer first, and if it fails, use the interactive
procedure and add rules to the transducer accordingly. The other approach is the eager strategy:
transform first all (finitely many) characteristic trees interactively. After adding respective rules
to the tree transducer, all trees can be transformed.

The advantage of the lazy strategy is that it is easy, but one has to return back to the interactive
procedure every time a new type of document is met. The eager strategy produces a complete
transducer at once, but after a big effort. Indeed, the effort may be overwhelmingly high, and some
of the synthetically produced characteristic trees may be such that they practically never occur in
real documents. Therefore we believe that the strategy should be lazy rather than eager.

We have a preliminary implementation of both transformations. They are still far from a real
running transformation system, but prove that the procedures can be automatized.

12

front

] T

title shorttitle aut hors intro
t eJ(t corr_aut hor aut hor * keywor ds abst ract
text apusg hor aut hgrz* t e‘xt
tex‘t aut hor aut hor *
(o J

Figure 8: Transformation of the recursive structure

front
title shorttitle aut hor s intro
text corr_aut hor aut hor * keywor ds abstract
text aut hor aut hor * t ext
t ext aut hor aut hor *

text €

Figure 9: Parse tree of the target grammar

13

5 Conclusions

It is too difficult for the user to construct the rules for the tree transducer manually. By defining the
association between the nonterminals of the grammars and applying it between the characteristic
trees of the source grammar and corresponding structures of the target grammar it is possible
to construct the rules at least semi-automatically with the computer if the grammars are closely
related and the tree association is congruent with the characteristic trees of the source grammars
and corresponding structures of the target grammar.

14

References

[AUT2]

[CKO5]

[Clag6]
[Dra9s]

[FS8§|

[FW93]

[GS84]
[1SO86]

[KLMN9O]

[KP95)

[KPPM34]

[KPV94]

[Kui96]

[KW97]

A.V. Aho and J.D. Ullman. The theory of parsing, translation, and compiling, Vol. I:
Parsing. Prentice-Hall, Engelwood Cliffs, N.J., USA, 1972.

K. Chiba and M. Kyojima. Document transformation based on syntax-directed tree
translation. Electronic Publishing — Origination, Dissemination, and Design, 8(1):15—
29, 1995.

J. Clark. James’ DSSSL engine. http://www.jclark.com/jade/ (May 31, 1999), 1996.

N. Drakos. The KTEX2HTML translator. http://www-
dsed.llnl.gov /files/programs/unix/ latex2html/manual/manual.html (June 1, 1999),
1998.

R. Furuta and P.D. Stotts. Specifying structured document transformations. In J.C.
van Vliet, editor, Document Manipulation and Typography, The Cambridge Series on
Electronic Publishing, pages 109-120, Nice, France, 1988. Cambridge University Press.

A. Feng and T. Wakayama. SIMON: A grammar-based transformation system for
structured documents. FElectronic Publishing — Origination, Dissemination, and De-
sign, 6(4):361-372, 1993.

F. Gécseg and M. Steinby. Tree Automata. Académiai Kiad6, Budabest, 1984.

ISO 8879. Information processing - Text and Office Systems - Standard Generalized
Markup Language (SGML). ISO, Geneva, 1986.

P. Kilpeldinen, G. Lindén, H. Mannila, and E. Nikunen. A structured document
database system. In R. Furuta, editor, EP90, Proceedings of the International Confer-
ence on Electronic Publishing, Document Manipulation & Typography, The Cambridge
Series on Electronic Publishing, pages 139-151, Gaithersburg, Maryland, 1990. Cam-
bridge University Press.

E. Kuikka and M. Penttonen. Transformation of structured documents. Flectronic
Publishing — Origination, Dissemination, and Design, 8(4):319-341, December 1995.

S.E. Keller, J.A. Perkins, T.F. Payton, and S.P. Mardinly. Tree transformation tech-
niques and experiences. SIGPLAN Notices, 19(6):190-201, 1984.

E. Kuikka, M. Penttonen, and M.-K. Viisdnen. Theory and implementation of SYN-
DOC document processing system. In Proceedings of the Second International Confer-
ence on Practical Application of Prolog, PAP-94, pages 311-327, London, UK, 1994.

E. Kuikka. Processing of Structured Documents Using a Syntax-Directed Approach.
PhD thesis, Kuopio University Publications C. Natural and Environmental Sciences
53, 1996.

P. Kilpeldinen and D. Wood. SGML and exceptions. In Proceedings of the PODP96
Workshop on the Principles of Document Processing, Lecture Notes in Computer Sci-
ence, Vol. 1293, pages 3949, Palo Alto, 1997. Springer-Verlag.

15

[Lam86] L. Lamport. HTgX, A Document Preparation System. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1986.

[MOB94] S. Mamrak, C.S. O’Connell, and J. Barnes. Integrated Chameleon Architecture. PTR,
Prentice Hall, Englewood Cliffs, N.J., USA, 1994.

16

