Hot-Potato Routing Algorithms for Sparse Optical Torus
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Abstract. In this work we present an optical network architecture and deflection (or hot
potato) routing algorithms supporting efficient communication between n processor nodes.
The network comnsists of an n X n torus, where processor nodes are situated diagonally,
and routing nodes are optical deflection nodes of two inputs and two outputs. A design of
optical deflection node is presented. Routing algorithms are variations of the greedy routing
algorithm, and by experiments and partial theoretical analyses they run efficiently on this
architecture.

1 Introduction

Routing algorithms have many applications in data communication. Our work is motivated by
the design of an efficient parallel computer, and in particular, by the emulation of shared memory
with distributed memory modules. In this application, we have a network connecting a number
of processor nodes (consisting of a router, a processor, and a memory module), and router nodes.
In each clock cycle, a router forwards all packets that arrived at it. A processor node acts like a
router if a packet was not targeted to it, but it absorbs a packet targeted to it. In addition to the
packets that it received to be routed forward, it also may send packets created by itself. However,
own packets can be sent only when there are less than two incoming packets to be routed, because
the number of incoming and outgoing packets is bounded by the properties of the network — in
our case there are only two input lines and two output lines.

Our task is very demanding because every clock cycle a routing decision must be made in each
routing node, and successive nodes independent of each others. Actually, indepence is not quite
true. Depending on the routing algorithm, in the long run there may be some kind of accumulation
of packets, which is usually harmful and difficult to manage.

By results in [18], if a parallel computation has enough parallel slackness, the implementation of
shared memory can be reduced to efficient routing of an h-relation. By definition, in an h-relation
each (processor) node has at most h packets to send, and it is the target of at most h packets. An
implementation of an h-relation is work-optimal at cost ¢, if all packets arrive at their target in
time ch. Obviously, if a processor has two output lines and two input lines, ¢ > 0.5 at best, and
¢ = 1 means that no time is lost for waiting even if a packet is send every time unit.

A precondition of work-optimal routing on n-processor architecture is that h is greater than
the diameter ¢ of the network and the network can move 2(n¢) packets in each step, since other-
wise slackness cannot be used to “hide” diameter influenced latency. Many kinds of architectural
solutions satisfying the above have been derived; see e.g. [7,11, 16, 18].

We favor mesh-based architectures like torus, since mesh has a simple, homogeneous structure.
A mesh also scales up by adding similar routing elements. (However, the size of the network grows
quadratically with respect to the number of processors.) On the other hand, work-optimality of h-
relation routing clearly requires a high bandwidth, and optics has a huge potential in this respect.



h-relation routing also requires switching of packets at the rate of clock cycle. Optoelectrical
conversions might be slow and energy consuming, and thus it would be desirable to keep the
packets in optical form as long as possible. The lack of optical memory, on the other hand, leads
to hot-potato (or deflection) routing as data cannot be stored in router nodes. The requirement
that the network must be able to move at least n¢ packets at every moment implies that there
must be 2(¢) nodes for each processor, i.e. the network must be sparse. This is satisfied, if there
are n processors in a n X n torus. For symmetry and equidistance, it is natural that the processors
are situated diagonally. This reasoning leads us to the concept of sparse optical torus (Section 2)
using only simple directed 2 x 2 optical nodes, and to the search of efficient hot-potato routing
algorithms for it (Section 3).

2 Sparse optical torus

We study a 2-dimensional n X n torus structure of diameter ©(n), while many other networks
studied in the literature have diameter ©(logn). A small diameter is considered advantageous
as the diameter determines a lower bound for the routing time. However, in three-dimensional
world the number of nodes can grow only cubically with respect to the physical distance. Hence,
the length of connections increases when the system is scaled up [19]. Some logarithmic networks
(e.g. the hypercube) also suffer from the fact that the degree of nodes increases as the size of the
network is scaled up. Meshes and tori do not suffer node degree and connection length problems
(both are constant). With a clever layout [14] all connections of a torus can have a small constant
length. We prefer the torus structure, because it is simple, has a constant degree, and connections
have a constant length. In this section we present the structure of the sparse optical torus and
discuss chances to construct one.

2.1 Structure of the network

A 2-dimensional sparse optical torus, SOT(n), consists of p processors (P, Pi,...,P,—1) and
n(n — 1) optical deflection nodes. The processors are on a diagonal so that processor P; resides at
location (i,n — 1 —4) of the underlying torus (see Figure 1). There is a 2 x 2 optical node R; ;
located at each position (4,5) such that i +j #n —1 and 0 < 4,5 < n — 1. The two outputs of
deflection node R; ; are connected to the deflection nodes or processors at locations (i+1 mod n, j)
and (4,j + 1 mod n) (respectively the inputs to R;; come from locations (i — 1 mod n,j) and
(¢, — 1 mod n)). Thus, all the connections are unidirectional. We assume that each deflection
node and processor is capable of receiving and sending one message per link in one time unit.

Lemma 1. The distance from processor P; to processor Pj isn, for alli # j.

Proof. A shortest path from location (i,n —1—14) to (j,n — 1 — j) involves dx = j —i mod n
moves along the X-axis and dy =n — 1 —j — (n — 1 — i) mod n moves along the Y-axis. Clearly,
0<dx,dy <n,sincei# j.Sincedy +dy =j—i+n—1—j—n+1+4i=0(modn), it must be
that dx + dy = n. O

Lemma 1 basically means that in hot-potato routing, the set of packets A, sent by the proces-
sors at time 7 can deflect only packets belonging to A, and for each set of packets A, there are
n moments of time for such deflections to take place.

2.2 Deflection routing

A routing strategy used to resolve output port contention problem in packet-switched interconnec-
tion networks is the hot-potato or deflection routing strategy. In the hot-potato routing all entering
packets must leave at the next step — i.e. packets cannot be buffered like in the store-and-forward
routing strategy. In general, in each node the out-degree must be at least the in-degree, and the
output link contention must be resolved somehow. If there are multiple packets preferring the
same output link, the routing strategy must select at most one for each out-going link.
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Fig. 1. A 6-processor 6 X 6 sparse optical torus.
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An out-going link is good for a packet, if it takes the packet closer to its destination. A link is
bad for a packet if it is not good for it. Actually, choosing a bad link means that the distance to
the destination grows by n — 1 instead of decreasing by 1. In this case it is also said that the packet
is deflected. Notice also that several links might be good for a packet. See [15] for definitions and
a survey of hot-potato routing techniques and results.

An advantage of the hot-potato routing is that the packets do not need buffering during the
transmission and only a small fraction of packets needs an optoelectronic conversion during the
transmission. Besides transmitting packets, a hot-potato routed network acts like a memory.

2.3 Implementation of an optical deflection routing node

The bandwidth of the system is divided in time slots, whose length T}, equals to the bypass time
of a packet. We call the length of slot T}, the packet cycle. Continuous streams of pulses are
transmitted over switches under the global bit clock. A packet consists of a header and data bits
so that the overall length of the time slot measured in time units is T},. A processor may insert a
packet into a time slot, if there is an empty slot in a data stream passing the corresponding switch.

An illustration of an optical deflection node has been given by Figure 2 [5,6]. An optical
deflection node operates as follows: The payload of an incoming packet is divided by a passive
coupler. The coupling ratio can be chosen to be e.g. 90/10 so that 10 % of the energy of packet
is guided to O/E conversion and 90 % is guided to a delay line after amplification. The header is
converted into electrical form and sent to the RCP (Routing Control Processor) while the other
share remains in optical form in a delay line. The RCP makes the routing decision and sets the
switches of the routing node into the correct state. If the circuit connected to the node desires to
send a packet, it activates the request signal of the routing node. When the node detect that there
is an empty incoming slot, it gives a permission to send for the circuit.
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Fig. 2. A schema of an optical deflection node[5].

The basic components of routing nodes, namely, passive splitters, passive combiners, and elec-
trically controlled switches, can be implemented by LiNbO3 technology [9]. The switching time of
LiNbOj3 switches lies in the range 10 — 15 ps [2].

The length of packet in an optical fiber can be evaluated by equation [, = W, where
N, is the size of the packet in bits, v, is the speed of light in vacuum, n is the refraction index
of fiber, and B is the link bandwidth. Note that the length of time slot T}, can be evaluated by
equation T}, = %.

There are three main factors that limit the capacity of a fiber-optic delay-line memory [17]:
fiber loss, chromatic dispersion, and synchronization errors. Assuming commercially available 10
Gbit/s link bandwidth and the size of packet 64 bytes (N, = 8 x 64), the length of packet (fiber-
optic delay-line memory) is about 10 meters and the length of time slot is about 50 ns. According
to Soukop et al., with a fiber loss of 0.2 dB/km, a maximum of 50 km of fiber could be used for
the data delay line [17]. According to Saleh and Teich, it is possible to obtain up to 10 Gbit/s link
bandwidth in the range up to ~ 50 km utilizing single-mode fiber at the operating wavelength of
1.3 pm [13]. Temperature changes may cause synchronization errors. If the temperature dependant
delay varies 35.5 ps/°Ckm [17], variations of +5°C result £7.1 ps of error in a 40 meters data
delay line. Synchronization error can be, however, removed by synchronization blocks [4].

3 Routing

In our architecture the distance from processor to processor is n. Hence the latency of routing is
2(n). We assume that the packets are targeted to random addresses. Therefore we cannot assume
that a processor receives only a constant number of packets from any given processor. However,
it is known that with high probability the number of packets is O(logn/loglogn) [12], if each
processor has O(n) packets. For this reason a good practical goal would be an algorithm that
routes nlogn packets (from each of the n processors) in O(nlogn) time.

3.1 Greedy routing algorithms

We will look closer at three different variations of the greedy principle. From the routing point
of view, the contents of the packets are not interesting. Therefore we assume that packets are
of the form (z,y), where z,y € {0,...,n — 1}, x +y = n — 1. Each node (processor or router)



has 0, 1 or 2 packets to route, coming from the left, up or from the processor itself, and to be
routed right or down. The behaviour of the general routing algorithm depends on the function
first,right:=protocol(i, j, S, z) that determines, which packet in S is privileged to choose direction
and to which direction it goes. The last parameter z is the name of the protocol. The general for
of the algorithm is

Algorithm 1 (Greedy routing algorithm)

proc Greedy
for i = 0..n — 1 pardo
for j = 0..n — 1 pardo
Let S;j = {po,p1} be the set of incoming packets at n;;
if n;; is processor (i.e. i+ j =n—1) then
for pe S;; do
if p = (i,j) then remove p from S; ;
if |S; ;| < 2 and n;; has packets to route then
add 2 — |S; ;| packets to S; ;
first,right := protocol(i, j, S; ;, )
if right=1 then
route first packet to right and second (if exists) to down
else
route first packet to down and second (if exists) to right

We now consider some special cases of the general algorithm.

One-sided greedy protocol Greedy-a. In the first of our protocols, a packet is first sent
right until it reaches its target column. Packets that have already reached the target column and
are moving down are privileged with respect to the packets still moving to the right. Packets
move downwards only if they have reached the target column. In particular, this rule prohibits a
processor from sending a packet downwards. We have

proc protocol(z, j, S, a)

if some packet p;, € S (k = 0,1) came from up then return %,0

elsif some packet p, € S (k= 0,1) is (m, j) for some m then return k,0
else return 0,1

Two-sided lateral greedy protocol Greedy-b. A possible weakness of protocol a is that it does
not fully use the transportation capacity of the network. As new packets are sent only along the
X-axis, only half of the network links are used. Protocol b sends packets to both arcs. However, the
risk of deflection also increases. To keep the risk of deflection homogeneous, packets are forwarded
randomly until they come to the edge, where they cannot continue in both directions without
losing the possibility to reach the target in n steps. Packets with this property are privileged over
the packets “in the middle” that can choose either route.

proc protocol(z, j, S, b)

Let k:=random(0,|S| — 1) and p = (h,m) be the k’th element in S
if h =i then return k,1

elsif m = j then return £,0

else return k,random(0,1)



Diagonal greedy protocol Greedy-c. The third of our protocols tries to delay the moment,
when there is difference in only one coordinate and the risk of being pushed to the next round.

proc protocol(s, j, S, ¢)

Let k:=random(0,|S| — 1) and p = (h,m) be the k’th element in S
if (h —4) mod n < (m — j) mod n then return k,1

else return k,0

3.2 Scheduled hot-potato routing algorithm

By Lemma 1 it is clear that one of the packets sent to processor P; at time 7 reaches P;. This
suggests that we could treat each routing round as the arbitrary OCPC [1] variation of the OCPC
model (Optically Connected Parallel Computer, [3]). By dividing the packets of each processor
to n subsets of size ' = h/n and treating the routing of each subset as a separate routing
problem on arbitrary OCPC, it would seem that we could extend the work-optical routing result
(h' = 2(lognloglogn) yields constant routing cost per packet) in [1] to our sparse optical torus.
However, in [1] the ’arbitrary’ means that a random packet of the conflicting packets succeeds
whereas using the routing strategy of Greedy-a, there is no randomness in the determination of
succeeding processors.

The basic problem in using the routing strategy of greedy-a to determine the routing paths of
the packets is that given any fixed target, Greedy-a sets the senders to non-equal position. Among
the packets sent to a fixed target, the one having shortest distance to its turning point always
succeeds and others fail. However, we could advance this property by properly scheduling the right
to sent to P; so that only one processor P; has the “right” to send to P; at any given time. The
idea in Algorithm 2 is this way to completely avoid deflections!

Algorithm 2 (Scheduled hot-potato routing algorithm)

proc Scheduled-hot-potato
for i =0..n — 1 pardo
Processor P; uses sequential n-way radiz sort to semisort
its packets by their target to n linked list
Let t be a global step counter (in each processor)
for i =0..n — 1 pardo
for j = 0..n — 1 pardo
Processor P;: acts as in algorithm Greedy-a
except that it attempts to send packets only to Piy4) mod n
Deflection node R;; (i + j #n —1): acts as in Greedy-a

The idea in Algorithm 2 is that processor P; sends packets to processor P yz) mod n in Steps
z,n+z,2n+ x,3n + z,. ... Conflicts are avoided, since all processors send to different targets at
any given time. Algorithm 2 is efficient only, if the distribution of packet (source, target)-pairs is
roughly even.

3.3 Experimental results

We ran some simulations to get experience how good our different versions of greedy routing
algorithms are. In simulations, processors send randomly addressed packets to each other, and we
want to see how efficient the algorithms are initially with “fresh” packets (Figure 3), and what is
the effect of increasing the slackness factor h (Figures 4 and 5).

We observe that Greedy-a and Greedy-b successfully route (1—1/e) and respectively 2(1—1/e)
packets per time unit, as will be theoretically confirmed in the next section. The diagonal algorithm
Greedy-c decreases in efficiency, when n grows. Figure 4 shows that by increasing h, the efficiency
of routing all packets approaches to the efficiency of routing fresh packets. Indeed, Figure 5 shows
that h = nlogn gives quite good efficiency results.
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4 Analysis

We would like to prove that with certain slackness value h Greedy-a and Greedy-b and Greedy-c
guarantee that the routing cost is less than or equal to a certain value with high probability. Un-
fortunately such an analysis is very complicated and we can only partially analyse these protocols.
Under some simplifying assumptions we can prove that when routing begins, packets reach their
target with certain probability. By this probability we know, how many of the h packets reach
successfully their target. After the first round the situation is no more “fresh” and analysing the
success probability becomes harder and we cannot do it. However, even these partial analyses
support the experimental results.
We first prove a result that may have some interest of its own.

4.1 Analysis of a recurrence equation

Let p be a constant such that 0 < p < 1 and let P(k,l) be a function defined by the recurrence
equation

P(l,k) for all k,1

1P(k—1,01)+1P(k,l—1) whenk =1>0
P(k,)=< pP(k—1,1)+ (1—p)P(k,l —1) when k>1>0

pP(k—1,l) when k >1=0

lwhenk=101=0
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Fig. 4. The effect of slackness on the cost of greedy routing

Can we estimate the values of P(k,!l). If p = %, denote Q(k) = P(k,k), and calculate Qo = 1,
Q1= %; Q2 = é—i, Qs = 170%, .--, Q appears to approach % Indeed, this is the case. We can prove
generally

Theorem 3.

a. limp_yo0 P(k, k) = 1—2(1—p)+2\1{m
b. limk—>oo %Z’H-j:k P(E,J) = 1}%1’(]_ _ 2(1 _p) + 1= 4p(1 —p)),

To prove a, denote ¢ = 1 —p and @ = P(k, k). When computing @}, recursively, computation
starts with a “diagonal” number @ and ends at the “diagonal” number @)y, and there may be
other “diagonal” numbers @);,0 < j < k in intermediate phases of the computation. Assume we
already know all @);,j < k. We reduce the computation of () to these as follows. Consider paths
from (k, %) to (0,0) in integer grid {(4,4)|0 < i,j < k}. Now

k-1
1.,
Qr = QZCj§qJP’+1Qk—j—1-
7=0

In this formula, 2 comes from the fact that on a path form (k, %) to (0,0) we return first to the
diagonal point (k—j—1,k— j—1) either from the upper side of the diagonal or from the lower side
of the diagonal. Each term in the sum corresponds to the first point on the diagonal (k, %), (k —
1,k—1),...,(1,1),(0,0) where we first come after leaving (k, k). C; is the number of paths from
(k, k) to (k—j—1,k—j—1) that do not contain any diagonal points (k—1,k—1),...,(k—j,k—j).
It is easy to see that among the edges of each path leading from (k,k) to (k —j — 1,k —j — 1),
there is one that leaves (k, k) with probability %, there are j edges that diverge from the diagonal



Greedy routing in optical torus, h =nlog n
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with probability ¢, and there are j + 1 edges that converge towards the diagonal with probability
p- Finally, the probability of reaching (0,0) from (k—j —1,k—j —1) is Qx—;—1. The numbers C;
are known in literature as Catalan numbers, and we know

Lemma 2. [10]

= ., i 1—y1-4
Analogously, denote Q(z) = Qo + Q12 + Q222 + .. .. By grouping factors in Qj,, we have
k-1 '
Qc =1 Ci(pg) Q-1 = p[C(p12)Q(2) k-1,
§=0

where [F(2)G(2)] is the multiplier of z* in the product of polynomials F(z) and G(z). Hence, we
have

Qo =1
[Q(2)]k2" = p[C(paz)Q(2)]k—12", for k > 0.
By adding columnwise we get

1—VT—4xpgz 1— /T —4pgz
Q(2) = 1+ p0(pg)Q(2)z = p—5——LLQ(2)z = 1+ ——LQ(2).
X pqz 2q
From this we can solve
2 1—2q+T—4pgz 1
Q(2) a --—4 P% - —R(2),

:2q—1+\/1—4pqz_ 2p(1 — 2) 1-2



where
_ 1-2q++/1—4pqz
= 2 .

Observe now that 1/(1 —2) =1+ 2+ 22 +... and denote R(z) = Ry + R1z + R22? + ... Then

R(z)

Qr=[1+z+22+..)(Ro+Riz+Ro2>+.. )y =Ro+Ri +... + Ry.

Hence,

_ 1-2q++/1—4pq
= % .
To prove part b of the theorem, denote S, =}, ik P(i, 7). By recursion rule,

lim Qk=R0+R1+...=R(1)
k—o0

Sn:P(O,n)+P(1,n—1)+...+P(g—1,g+1)+

P(

P(%-q—l,g—1)+...+P(n—1,1)+P(";0):

pP(O,n—1)+(1—p)P(0,n—1)+pP(1,n—2)+...+(1—p)P(g—2,g+1)+pP(g—l,g)+
1 _n n 1 _nn
2Py~ byl +ePly g 1t
n n n n
pP(§,§—1)+(1—p)P(§+1,§—1)+...+pP(n—2,1)+(1—p)P(n—1,0)—|—pP(n—1,0)=
n n n n
Snfl + (]- _p)P(§ - ]-7 5) + (1 _p)P(§7 5 - 1) = Snfl + 2(]- _p)Qn/2

for even n. The same argument applies to odd n. Hence,
Spn=2(1-p)Qo+---+2(1 - p)Qp/2-

By lim @, = 1_2“27 ;)1_41"1 we get lim %S = 1%"(1 —2q + /1 —4pq). O

4.2 Analysis of greedy routing algorithms

Of the three greedy routing protocols, Greedy-a proves out to be the easiest to analyse. The
random lateral protocol Greedy-b has some similarity with Greedy-a, while the diagonal protocol
behaves differently.

Greedy-a. The route determined by Greedy-a is unique. If a packet avoids deflection when
attempting to turn to the correct column, it will successfully reach its target. If many packets try
to get to the same target, one of them is successful. Consider the n packets that are being sent
to their random destinations at a given moment of time. How many of the n packets reach their
destination? The probability that none of the n packets tries to arrive at a fixed processor is

1 1
1— )" — -
( n) e
Hence, with probability 1 — 1/e there are packets coming to this destination and we know that
exactly one of them is successful. As there are n destinations, the expected number of successful
packets is n(e — 1) /e = 0.63 x n. Therefore, for large n and h, e/(e — 1) = 1.58 should provide an
approximation for the routing cost. This result matches with our experiments.



Greedy-b Even if Greedy-b is apparently quite different from Greedy-a, actually it behaves
similarly.

In Greedy-b, the n processors send simultaneously 2n packets to 2n targets — remember that
each processor has two receivers. First packets advance randomly until they reach the right row or
column. Heuristically, we can identify randomly progressing packets with the horizontal packets
of Greedy-a.

The probability that no packet is directed to a receiver is (1 — %)2" — % and hence each of
the receivers has the probability 1 — 1/e of getting a packet. As there are 2n packets, the expected
number of successful packets is 2(1 — 1/e), which is confirmed by the experiments.

Greedy-c In Greedy-c algorithm, let P(k,l) denote the probability of a packet at distance (k,1)
from the target to achieve the target. With probability % it can choose the link in the node. In
“fresh” routing situation, when target addresses are random, even in the other case, when the other
packet chooses first, our packet has equal chances to decrease distance to its target. Hence, P(k,1)
is determined by

P or all !
iP(k—1,1)+ tP(k,0 —1) when k=1>0

Pk, =4 3Pk —1,1) + 1P(k,1 — 1) when & > 1> 0
%P( —1,l)whenk>l:0

lwhenk=1=0

By theorem 3b the average of P approaches to 1/3, and hence about 2n/3 should reach the
target in the first round. However, experimental results do not satisfactorily match with this
analysis, which must therefore be too simplistic.

4.3 Scheduled hot-potato routing

When applied to an h-relation, the Algorithm 2 first semisorts the packets in each processor by
their target to n lists in O(h) time by using sequential n-way radix sort. After that the routing
time is determined by diameter n and max; ; w(i, j), where w(i, j) is the number of packets P; has
for P;. It is well-known [12] that if A = 2(nlogn), then w(i, j) = O(logn) with high probability.
In other words, assuming that h = 2(nlogn) there exists such constant ¢ that after n+ ch routing
steps all packets have reached their destination with high probability, and thus the routing cost
per packet is upper bounded by another constant.

5 Conclusions

We presented an architecture, sparse optical torus, and algorithms for implementing a communi-
cation structure to be used in parallel computers. We believe that the simple, regular structure
and all-optical communication are important benefits of the architecture. Also we believe that the
presented routing algorithms based on greedy principle are useful and realistic. Software simu-
lations support this claim. Unfortunately the theoretical analysis of the algorithms is still quite
deficient.

A natural continuation of the work will be to extend the constructions to three dimensions. In
three dimensional sparse torus, n? processors are set diagonally into an n3 torus. The advantage of
3-dimensional sparse torus over 2-dimensional sparse torus is the decrease in the number of packets
(or h in h-relation) that are needed for work-optimal routing. As for the scheduled Algorithm 2,
we believe that also for the simpler Algorithms Greedy-a and Greedy-b, h € 2(nlogn) would be
enough for work-optimal routing.

Often locality helps a lot in communication problems. It would be interesting to study the
efficiency of a two-level structure, where the high level sparse optical toroid routes to an area of
size O(logn) and in this area packets are routed locally (by a small PRAM, see [7]).
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