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We study emulation of common graphs on d-dimensional static mesh of
optical buses. The target architecture consists of nodes arranged to a d-
dimensional n-sided grid and dn?~! optical buses. A bus is used to connect
n nodes along a dimension. All nodes are connected to d buses — one per
dimension. Wavelength division multiplexing is used to create channels into
each bus. The aim in embedding graphs to such a target architecture is to
minimize the number of channels used per bus, to avoid using intermediate
targets in implementing the edges of the guest graph, and to minimize the
physical distance between communicating nodes within each bus. We study
embedding and emulation of meshes, fat meshes, coated meshes, meshes
of trees, hypercubes, butterflies and fat trees. We show almost optimal
embeddings for each of the graphs.

1. INTRODUCTION

Parallel computers have a routing machinery for processors to communicate with
each other. Often the routing machinery has a fixed topology — e.g., a hypercube
or a butterfly. Since the physical wiring of (logarithmic) networks is troublesome,
optical connections within optical buses provide a tempting alternative for physical
wiring [21]. Observe that it might be possible to reconfigure such a wiring easily. As
is well-known, the optics provides a huge potential bandwidth both via time division
multiplexing (TDM) as well as via wavelength division multiplexing (WDM). Since
tunable transmitters (and receivers) are not very fast currently, we only study static
connections is this paper.

We denote a d-dimensional n-sided static mesh of optical buses, where each node
has p (fixed wavelength) receivers and transmitters per bus, by SMOB((n), p).
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We do not consider using TDM to create channels into optical buses but assume
that each channel corresponds to a unique wavelength within a bus. Moreover, we
assume that a channel connects only one transmitter to one receiver. We assume
no broadcasting facilities. Thus, we need p x n channels per bus.

We consider embedding and emulation of meshes, fat meshes, coated meshes,
meshes of trees, hypercubes, butterflies and fat trees. Our aim is to minimize the
number of channels used per bus, and to avoid using intermediate targets when
implementing edges of the guest graph on the target architecture. A general result
(Section 1.2) implies that arbitrary graphs can be emulated rather efficiently on
a d-dimensional SM OB, but in the worst case up to 2d — 2 intermediate targets
may be needed for an edge of the guest graph. We observe that in most cases it
is possible to avoid using intermediate targets. Avoiding is important, since re-
routing an optical signal in another bus (using a different wavelength) can be a
slow operation. We also attempt to minimize the physical distance between any
two nodes communicating with each other via a bus. We consider this important,
since hiding the delay of transmitting a signal may involve requiring that signals
are rather long, restricting the clockrate of some components, or perhaps expecting
that certain amount of parallel slackness [27] is available.

1.1. Concepts

Typically, in the literature (see e.g. [2, 11, 12, 25]), embeddings and emulation
operate on graphs. An embedding of a graph G into a graph H maps the nodes of G
to the nodes of H and assigns a path in H for each edge of G. Through embeddings
one hopes to show good functional emulation of the guest graph G on the host graph
H. However, our target of embedding and emulation is the SMOB({n)?, p). Since
the SM OB is not an ordinary graph, we need to redefine concepts embedding and
emulation.

DEFINITION 1.1. An embedding £ = E(G,#H) of communication graph G into
static MOB H = SMOB({n)¢, p)

1. assigns the nodes of G to the nodes of H;

2. assigns the mapping of transmitter and receiver channels properly; and

3. maps for each directed edge vs — v; € G a communication path (ug, (1,u1,
Coyenoyuy_1,(,u), where ug = E(vy), up = E(vg), and the (;-values are channels
used to transmit from w;_1 to wu;.

The length of communication path (ug,1,u1, oy, u—1,§,u) is I. A commu-
nication path is valid, if the nodes u; and u;+1 are connected together with a bus
along some axis j, and some transmitter of u; and some receiver of u;+1 along the
7’th axis are set to use channel (1.

The efficiency of an embedding £ = E(G,H) is measured with the following
properties:

expansion @(€) = i—g is the ratio of the number of nodes in G to the number

of nodes in H;
load ¢;(£) is the maximum number of nodes of G assigned to a single node of H;
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dilation p4(E) is the length of longest path in H that is an image of an edge of
G;

congestion ¢.(€) is the maximum number of images of edges of G that share a
common communication path “edge” (a channel) in H; and

stretch (&) is the length of longest stretch of a single channel in H (defined by
fr and fr). The distance in a bus is measured as the distance in a linear array. In
other words, if a communication channel {; connects nodes {z1,...,%;,...,2q) and
(®1,...,%-1,Yj,Tj4+1,. .., %q), the stretch of ¢; is |z; — y;|.

Besides the above parameters, we could measure, e.g., the maximum sum of
channel stretches per bus (energy and bus volume) or the maximum number of
channels crossing a single point in a bus (bus capacity).

DEFINITION 1.2. A stepwise emulation F = F(£,S) assigns a collision-free
schedule S for the movements of packets according to the communication paths.
The length of schedule, emulation time, is denoted by ¢;(F).

A schedule S solves the channel congestion problem, and therefore the property
s in fact supersedes the properties . and ¢q4. In the following, we are primarily
interested in the properties ¢, and ;.

1.2. General embedding and emulation results
Let G be some arbitrary communication graph, H = SMOB({(n)%,p), and £ =
E(G,H). Lemma 1.1 states the trivial fact that the condition p4(&) = ¢.(€) =1
implies an optimal emulation schedule.

LEMMA 1.1. If pa(€) = p(E) = 1, there exists such an emulation F = F(E,S)
that o (F) = 1.

The following Lemmas 1.2 — 1.4 state that some quantities of an emulation can
be linearly traded for another quantity. The proofs are trivial. Lemmas 1.2 — 1.4
can be used to derive new emulation results from a given result.

LEMMA 1.2. (trade channels for time) For each emulation F = F(£,S) and c,
1 < ¢ < p, there exists such an emulation F' = F(£',S"), where &' = E(G,H'),
on simulating machine H' = SMOB({(n)?,c) that ©4(E') = pa(E), vs(E') = s (E),
@e(E') = pu(€), and i (F') = [p/clpu(F).

LEMMA 1.3. (trade time for channels) For each emulation F = F(£,S) and
c € IN,1 < c < @(F), there exists such an emulation F' = F(E',S"), where
&' =E(G,H'), on H' = SMOB({n)¢,c x p) that a(E') = pa(E), @s(E') = @s(E),
Pe(€) = u(€), and gy(F') = maz{ [ou(F) /], pal)}.

LEMMA 1.4. (trade nodes for time) For each emulation F = F(€,S) andc € IN,
1 < ¢ < n, there exists such an emulation F' = F(&',S"), where &' = E(G,H'),



4 V. LEPPANEN

on H' = SMOB({[n/c])?, p) that ©a(E') < wa(€), ps(E') < Tws(€)/c], @e(€') <
Ape(€), and o (F') = clpy(F).

What is known of embedding an arbitrary graph into the SMOB? Rao [24] has
shown the following result (Lemma 1.5) by using Hall’s Matching theorem [6, 13].
Thus, each 2-degree graph can be emulated in 3 routing steps on a 2-dimensional
SMOB. Lemma 1.6 states the corresponding result for a d-dimensional SMOB.
Both results are based on the following ideas: An r-degree graph is a subgraph of a
regular r-degree graph; a regular r-degree graph can be seen to consist of r perfect
matchings; a perfect matching can be solved by 2d—1 axial permutation operations
(Hall’s Matching theorem provides a method to “shrink” the problem size with 1
dimension by doing 2 axial permutations; the 1-dimensional case requires only one
permutation); and d permutations can be solved in parallel (one per axis).

LEMMA 1.5. [24] Let H' = SMOB({[V/N1)2,1). For any N-node r-degree graph
G, there exists such an emulation F' = F(E',S) on H', where &' = E(G,H'), that
ee(€') =1, pa(€') <3, and p(F') = 3[5].

LEMMA 1.6. Let H' = SMOB(([vV/N])%,1). For any N-node r-degree graph G,
there exists such an emulation F' = F(E',S) on H', where &' = E(G,H'), that
0e(E') =1, pa(€') <2d 1, and pi(F') = (2d - 1) x [5].

The result of Lemma 1.6 is surprisingly good considering what is assumed of
G. By using Lemma 1.3 the emulations of Lemma 1.5 and 1.6 can be speeded
up. Unfortunately, Lemma 1.6 does not attempt to minimize the stretch ¢,: Only
the side length [v/N] — 1 sets a trivial lower bound for it. In the following, we
observe that better emulations can be found for several common graphs (than what
is provided by Lemma 1.6).

2. EMBEDDING RESULTS
2.1. Mesh

Lemma 2.1 states that it is trivial to emulate a d-dimensional mesh on a d-
dimensional SMOB. It is also appealing to study emulating a 3-dimensional mesh
on a 2-dimensional SMOB. The case “a 2-dimensional mesh on a 3-dimensional
SMOB?” is not seen interesting, since the routing properties of a 2-dimensional
mesh are clearly weaker than those of a 3-dimensional mesh of the same size. Let
Gmesh((n)?) denote the underlying graph of a d-dimensional regular mesh with
bidirectional connections.

LEMMA 2.1. There exists such an embedding
gycled =F (Gmesh(<n>d)a SMOB((TL)d, 2))

that e = @ = @4 = pc = ps = 1.
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LEMMA 2.2. There exists such an embedding
Ei7? = B (Gmesn((n)*), SMOB((n*/?)2,3))

where \/n € IN and 2|\/n, that e = ©¢ = w4 = p. =1 and s = \/n.

Proof. Let n = s2. The idea is to flatten the 3-dimensional mesh along the Z-axis.
We reserve an s x s area for each tower of Z-axis nodes, and flatten all towers in the
same way. Clearly, all connections along the X-axis and Y-axis can be implemented
with dilation 1 and stretch s. And the implementation of them requires at most
2 receives (and transmitters as well as channels) per bus per node. Clearly, the
connections along the Z-axis are implemented within restrictions, if we can draw
such a continuous snake (dilation 1) that goes through all the nodes of an s x s
mesh (completeness) and changes X/Y-direction at each node excluding the head
and tail of the snake (channel restriction).

The case s = 2 is obvious. Assume that in the case s = 2 x ¢ we have a snake that
ends to some of the border points of the s x s mesh. The snake can be extended to
case s' =2 X (i + 1) as shown in Figure 1. The construction method clearly works,
if2s. m

FIG. 1. Continuing a snake.

For s = 3, it does not seem possible! to prove Lemma 2.2. We conjecture that it
is not possible to prove the above result, if 2 fs (and s > 1). Either the number of
channels p, the area reserved for Z-axis, or the emulation time must be increased.
Lemma 2.3 implies that the result of Lemma 2.2 is asymptotically optimal.

LEMMA 2.3. For each such embedding
£33 = B (Gean((n)?), SMOB((n*/*)?, ) ),
for which \/n € IN, and @; = @q = . = 1, the stretch ¢, > 2/n.
11f the number of channels per node per bus is relaxed to 4, we could also have proved Lemma

2.2 simply by using the fact that every m x m’ grid has a Hamiltonian path, if mm’ = 0 mod 2
(simply go through the grid row by row).
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Proof. The diameter of guest graph is 3n — 3. Thus a packet from the lower left
corner node of H reaches the higher right corner node in at most 3n — 3 hops. Since
the Manhattan distance of the two nodes is 2n3/2 — 2,

2n®/2 -2 2m¥?2-2 2

> — .
2 R w R 4L

(For every a>b>0andz >0, § > ¢2.) m

We consider one more embedding, namely that of embedding a 2d-dimensional
mesh into d-dimensional SMcMOB. This provides a very regular construction,
where the logical diameter = the stretch of embedding. Whether this kind of bal-
ance is important, is left open. Lemma 2.4 states the result. Observe that the

construction wastes no transmitters or receivers.

LEMMA 2.4. There exists such an embedding
ggzd'_)d =K (Gmesh(<”)2d)aSMOB(<n2>374)) )

where n € IN, that vy = g = p. =1 and s =n.

Proof. A 2d-dimensional space can be seen to consist of a d-dimensional regular
space of d-dimensional regular spaces. Thus, the embedding is basically composed
of n? meshes of size n®. The meshes are simply put side by side in the d-dimensions
to a regular cube. Corresponding routing machinery nodes in the neighboring
spaces are connected to each other. Thus, the stretch equals to the side length n
of a d-dimensional n?-node regular mesh. All the connections are evidently axial,
and the node degree d x 4 of SM OB is sufficient to implement all the connections
of the 2d-dimensional mesh nodes. W

2.2. Fat mesh and coated mesh

A fat mesh [8] is a generalization of the ordinary d-dimensional n-sided mesh.
The connections between nodes along the i’th axis are simply n-folded. Although
the degree of nodes is d x n, each node can forward all the packets passing through
the node. The connections between nodes are numbered from 0, ...,n—1, and once
a packet is sent using the j’th link, it will traverse to its target using only that link
at each node. A coated mesh [20] is a d-dimensional n-sided mesh of simple router
nodes, whose each surface coated with processor&memory modules. Both coated
meshes and fat meshes enable time-processor optimal PRAM simulation [8, 20]
whereas the ordinary meshes do not.

Embedding a d-dimensional fat mesh or coated mesh into a d-dimensional SM OB
is trivial. Similarly, embedding a 2d-dimensional fat mesh or coated mesh into a d-
dimensional SM OB is straightforward. The resulting embeddings are interesting.
(Due to space limitations, we omit the exact details [20].) In the fat mesh case,
the stretch a2 the logical diameter = the degree of nodes (= 2d’th root of number
of nodes). Respectively for the coated mesh embeddings, the stretch ~ the logical
diameter ~ the ratio of the number of router nodes to the number of processors
(but the degree of nodes is a constant).
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2.3. Mesh of trees

Embedding a d-dimensional mesh of trees into a d-dimensional SM OB can be
done by using the fact that the d-dimensional mesh of trees is a leaf-level graph-
theoretical product of d binary trees whereas the d-dimensional SM OB is a product
of d 1-dimensional SM OBs. Lemma 2.6 advances this and gives an (almost) optimal
embedding with respect to the result of Lemma 2.5. Whether Lemmas 2.5 and 2.6
can be improved is left open.

Let Gpi(r,d) be the underlying graph of an r-sided d-dimensional mesh of trees
and assume that

gHpd=d - g (Gmt(r, d), SMOB((W/ (d + 1)rd — drd—11)4, p))

is an ideal embedding for which ¢, = ¢4 = 1.

Jd>d -
LEMMA 2.5. %(57(:2 7N > 2T10g1r'

Proof. Since Gy (r,d) does not fit into SMOB((| {/(d + 1)r? — dri=1])?, p), in
any embedding E,S:t) 44 there must be at least two nodes, whose Manhattan dis-
tance is at least § = d x [ {/(d + 1)r? —dr?=1| — d. Since the logical diameter of

Gi(r,d) is 2dlogr,

i 0 1>d(r—l) _r—1
2dlogr' — 2dlogr  2logr

is a lower bound for the stretch. W

LEMMA 2.6. There exists such an embedding
Emi ! = B (Gm(r,d), SMOB((2r —1)4,3))

that = @4 = pe. =1 and ps; = [(r — 1)/ logr].

Proof. Heckmann, Klasing, Monien, and Unger [9] provide an optimal embedding
of a complete binary tree into one-dimensional array with stretch [(r — 1)/logr].
Since the G (7, d) is a leaf-level product of d complete binary trees, ¢y = g = 1
and ¢ = [(r — 1)/ logr]. Each binary tree leaf is neighbor with one node per axis
(the parent of it) and each intermediate node of a binary tree is neighbor with at
most 3 nodes along one of the axes (parent + two children). Thus, p = 3 parallel
connections guarantee that . =1. N

In [9] an almost optimal embedding of a complete binary tree into square grid
is also given. It can be used to derive an efficient embedding of Gp(r,2) into a
3-dimensional static MOB (although it might be difficult to efficiently advance an
even-sided SMOB).

Consider embedding a 2d-dimensional mesh of trees into a d-dimensional SM OB.
Since a G¢(r,2d) can be seen as a certain kind of product of d G,¢(r, d)’s, it is
possible to advance the technique of Lemma 2.4 to pack a 2d-dimensional mesh of
trees into a d-dimensional SMOB. As before, the contribution of Lemma, 2.7 is to
shorten the logical diameter at the expense of point-to-point connection length.
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LEMMA 2.7. There exists such an embedding
£ = B (Gmu(r,2d), SMOB({(2r — 1)*)%,3))

that wr = 94 = pe =1 and s = [(r —1)/logr] - (2r — 1).

2.4. Hypercube
Rao [24] has studied embedding a 2"-node binary hypercube Geype (1) in the 2-
dimensional case. The idea is to advance a well-known and obvious VLSI layout
(see e.g., [16]). Observe that if d|r for some integer d, the 2"-node cube is a graph-
theoretical product of d cubes of 2"/%-nodes. Lemma 2.8 simply advances this
observation.

LEMMA 2.8. Forr' € IN, there exists such an embedding

dr'od _ (chbe(dr’), SMOB((2" )4, r'))

cube

that Yo = pr = pa = pe = 1 and ps = 27 1.

Finding as efficient embeddings for arbitrary r is not known to us. Rather efficient
embeddings can be constructed for a d-dimensional SM OB, where r mod d of the
sides are twice as big as the others. Lemma 2.9 (trivial) states that the result of
Lemma 2.8 is close to optimal with respect to the stretch ¢;. Let

EX) = E (Geuse(r), SMOB((2")', 7))

cube
be any embedding for which ¢y = pg = @ = 1.

LEMMA 2.9. ¢ (X ) > (27 —1)/r.

cube

2.5. Butterfly

The case of butterfly is especially interesting, since the SB-PRAM [1, 4, 7] and
the Fluent abstract machine [22, 23] are based on the butterfly structure. Layouts
for the butterfly have also been considered in several papers. The approach to
the layout problem has been either purely VLSI based (see Figure 2) or a more
practically oriented [3, 10, 28] (where elements are printed circuits boards, racks,
cabinets, ...). It would be desirable to compare the SB-PRAM and the Fluent ab-
stract machine implementations to other PRAM implementations based on coated
DAGs [20]. Thus it would be interesting to state the embedding facts related to
those butterfly implementations. Unfortunately, the physical layouts are strongly
based on the VLSI cost model, and therefore it is difficult to translate the layouts to
the SM OB based layouts fairly. In the following, we present a lower bound result
for an ideal embedding Elg;)’er and upper bound results for two other embeddings.

Let Gpys(r) be the underlying graph of an (r + 1) x 2" node butterfly. Imagine
that there is a parametric ideal embedding

£ = B (Guyr), SMOB([ /G + DT, )
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FIG. 2. A VLSI layout of the butterfly.

such that @y = g = p. = 1.
LEMMA 2.10. Sos(glg;)vﬂ—)d) 2 (d _ l)z(r/d—logr—l).

r—d

Proof. (Proved as Lemma 2.5.) In any embedding 5,5;)’ , there must be at least

two nodes, whose Manhattan distance is at least § = d x | {/(r + 1)27| — d. Since
the logical diameter of Gy (r) is 2r,

5. (d—1)2%

_1> =(d—=1 2(r/d710gr71)
27’-| - 2r ( )

[

is a lower bound for the stretch. MW
In [24] Rao shows how an 72"-node cube-connected-cycles graph (see e.g., [13])
can be embedded efficiently into a 2-dimensional SM OB by building a Hamiltonian
cycle to a /T x /r subgraph? and using the hypercube style embedding on top of
the small meshes. The cube-connected-cycles is very similar with the butterfly,
and Rao conjectures that the butterfly can be implemented similarly. Indeed, it
is wise to wrap each chain of r 4+ 1 nodes into a [/r + 1] x [v/r + 1] plane (or a
d-dimensional [/r + 1]-sided cube) and then attempt to apply the hypercube style
embedding on top of it. How can we guarantee that (a) all the connections are axial
and (b) the number of transmitters (and thus receivers and channels) reserved per
node per bus is minimized? Let us call straight edges, those edges of the butterfly
that preserve the row number, i.e., go straight along a row in Figure 2. Others are

2This is possible for 2|/r. If the Hamiltonian cycle also has the property that the path turns
at each node, then the utilization of transmitters and receivers is efficient.



10 V. LEPPANEN

called cross edges. The chain construction used in the proof of Lemma 2.2 clearly
guarantees the condition (a) for the straight edges. To achieve the condition (a)
for the cross edges, we need to agree how all the 2" chains are arranged. We choose
to use the same arrangement for each chain. Consequently, if a connection in the
chain from node i to node i 4+ 1 takes place via the j’th dimension of the SM OB,
then we require that the j’th dimension is also used to implement all the cross edges
from level i to level 4 + 1. In other words, we use the j’th axis to change the i’th
bit in the binary representation (of the row number).

Consider, the hypercube embedding given in Section 2.4. In it we define that
1/d’th of the bits are changed using the first axis, one 1/d’th using the second,
and so on. It is irrelevant, which of the bits are changed by using the j’th axis.
However, if the number of bits loaded on the j’th axis is x;, then the side length
of SMOB along the j’th axis will be 2% x 7', where 7’ is the side length of a
small d-dimensional cube into which the chain (of length r 4+ 1) is wrapped. By
minimizing the maximum side length of SM OB, we also minimize the stretch
(which is 2%i~! x r'). Minimizing the side length is also related to the condition
(b). Namely, if the chain turns at every node, one transmitter per node per bus
is enough to implement the chain. To achieve small stretch, we require that the
chain uses as evenly as possible the d axes of the SMOB. In the case d = 2, our
construction of Lemma, 2.2 clearly has this property. Based on the above discussion,
we state Lemma 2.11. The case d = 3 is more complicated. It seems to be possible
to show a similar result, but we must leave the exact construction of the chain open.
We conjecture that in the 3-dimensional case the stretch of Gyz(3r') can be upper

bounded by 27 1 - [¥/3r" + 1].

LEMMA 2.11. For r' € IN, there exists such an embedding
&85 = B (Goy (2n'), SMOB(2” - VAT T1)%,2))

that p. = pp = g =@, =1 and @, = 27" ~1 . [\/2r" + 1].

2.6. Fat tree

As the butterfly, the fat tree is interesting due to the practically oriented interest
it has received. One communication subsystem of the CM-5 machine [19] is a fat
tree. The fat trees are also interesting due to certain universality results [15]. On
the other hand, the fat trees have a rather high degree and the short logical diameter
inevitably implies long physical connections. Moreover, the fat trees (as well as the
multibutterfly variant of the butterfly) are closely related to so called expander
graphs, which provably have very good routing and fault-tolerance properties [14,
17, 26).

Several definitions (see e.g., [15, 19, 18]) are given for fat tree in the literature.
Originally, it was defined by Leiserson [18], but in Definition 2.1 we follow the
definition given in [15], which defines the fat tree as a layered cross product [5] of
a quad-tree and a binary tree.
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DEFINITION 2.1. A fat tree of height £ consists of £+ 1 levels. At level k (where
0 <k <¥), it has nodes Vjo,. .., Vj 92— _1. Thus, a fat tree has

£

Z 926—i _ 92t _ ot

i=1

intermediate nodes and 22¢ leaf nodes. Intermediate nodes, except the 2¢ root
nodes, have degree 6. The root nodes have degree 4. A node Vj, (where 0 <
k< fand 0 < n < 2%-% _ 1) is connected with bidirectional links to nodes
Vk+1,(n mod 2k)+(n div 2k+2)x2k+1 and Vk+1,(n mod 2%)4+2k+14(n div 2k+2)x2k+1- Thus,
a fat tree has altogether S ') 2 x 22(~¢ = 92642 _ 9642 pidirectional links. The
diameter is 2.

D = Processor () =router

FIG. 3. A fat tree of height 2.

How to embed the underlying graph G (¢) of an ordinary fat tree of height ¢
into a 2-dimensional SMOB? If it is required that ¢, = ¢4 = 1, the only possible
shape of the SMOB is (221 — 2¢) x 1) (a fat tree of height £ consists of 22¢ — 2¢
intermediate nodes and 2%¢ leaf nodes (processors)). Consider embedding a fat tree
of height 1. All the leaf nodes are connected to both of the root nodes, and therefore
a line is the only possible shape. The same repeats at each level. In the following,
we present a straightforward adaption of the basic H-tree layout of the fat tree (see
e.g., [16, Lecture 25]). Our embedding £7;7%, will have ¢4 = ¢, = 2, but there is a

straightforward emulation on £7;7% that has ¢; = 2.

LEMMA 2.12. There exists such an embedding
E3% = E(Gpe(0), SMOB({(2"' — 1) x 2),3))

that o =1, g = . =2 and @, = 271
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e e

D = processor O = router node

FIG. 4. Packing fat trees to a plane.

Proof. The basic idea of the embedding is described in Figure 4. At each level i,
the construction consists of 4 level ¢ — 1 constructions that are connected to the
array of intermediate nodes in the middle. At level i, there are 2¢ intermediate
nodes (except at level 0 there is only one processor and no intermediate nodes).
Thus, the vertical side length of the resulting construction is 2¢. The horizontal
side length is s(i) = 2s(i — 1) + 1, which has solution s(i) = 2*! — 1, since s(0) = 1.

If the intermediate nodes V; ;, 0 < j < 22¢=i at each level i are arranged from
the top to the bottom in increasing order of j (to arrays V; zoi,...,Vj (g41)2¢ for
an integer x), then one of the connections from each level i — 1 intermediate node
to level i intermediate node is straight. This can be seen from Definition 2.1. We
reserve a channel for both of these “horizontal” connections. The stretch of these
straight connections is s(i — 2) + 1 = 2¢~1. The other connection from each level
i — 1 intermediate node is drawn via a (unique) node in the same column with the
level 7 — i intermediate node. This increases the load of each horizontal channel by
1, since each level i intermediate node receives exactly 2 connections from the left
(right) side. All in all, an intermediate node needs 3 “horizontal” channels but only
one “vertical” channel. It is not difficult to determine that the vertical stretch of
the two-phase connections is also 2i=1. ®

It is also possible to define a “3-dimensional” variant of the fat tree [15]. The
topology of a 3D fat tree is given in Definition 2.2 (it can be seen as a layered cross
product® of a 23-ary tree and a 23~ !-ary tree).

DEFINITION 2.2. A 3-dimensional fat tree of height £ consists of £ + 1 levels.
At level k (where 0 < k < £), it has nodes Vi 0, ..., V} 2se-x_q. Thus, a 3D fat tree
has

‘

Z 23{71’ — 23[ _ 22f

i=1

3Naturally, it would be possible to consider other kind of “fat trees”. In general, an L.CP of a
ki-ary tree (downwards) and a kg-ary tree (upwards) forms a “fat tree”, if k1 > ko > 2.
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intermediate nodes and 23¢ leaf nodes. Intermediate nodes, except the 2%¢ root

nodes, have degree 8 + 4 = 12. The root nodes have degree 8. A node V4 ,, (where
0<k<land0<u<2% % _1)is connected to nodes

Vk—l—l,(u mod 22k)4xx22k 4 (u div 22k+3)x22k+2,

where = 0,1,2,3, with bidirectional links. Thus, a 3D fat tree has altogether
270 92 x 236=i = 93643 _ 92643 Yjidirectional links. The diameter is 2/.

How is the “3-dimensional” variant of the fat tree (see Definition 2.2) embedded
into a 3-dimensional SM OB? Basically, an embedding with similar structure is easy
to construct. The starting point of construction is an 8-processor 3-dimensional
fat mesh having 4 intermediate nodes. The processors are arranged to corners
of a 3 x 2 x 2 space and the intermediate nodes are arranged to a 2 by 2 plane
(between the two groups of corners). The construction is extended similarly by
gluing together 8 corner block with one plane of intermediate nodes. Clearly, the
resulting construction has size 21 — 1 x 2¢ x 2¢.

In the initial case, we must implement a connection from each corner node to
each of the four intermediate nodes. Thus, ¢4 = 3. (Observe that we are still
doing better than Lemma 1.6.) Now, we have two choices: Either to attach two
“horizontal” channels to each corner node (emulation requires maz{2, ¢4} steps), or
pipeline the 4 virtual channels through one “horizontal” channel (emulation takes 4
steps). We choose the latter option. Thus, to implement the 8 channels, we attach 2
“horizontal” channels to each intermediate node for this purpose. Each intermediate
node has 6 packets to forward. It is not difficult to see that by attaching 2 channels
per node for both of the remaining axes, the packets can be routed to their target
in 3 steps (thus, the emulation succeeds in 4 steps). The above described routing
path designing and scheduling succeeds similarly in the higher levels. It is also easy
to see that the maximum stretch along each dimension at level i is 2¢~1. We state
the above in form of Lemma 2.13. There exists an emulation on top of 5;'{’ 3 that
requires 4 steps.

LEMMA 2.13. There exists such an embedding
£ = E(Gye3(0), SMOB(((2F! — 1) x 2¢ x 2),3))

that oy =1, o3 =3, @, =4, and @, = 271,

The discussed embeddings £7;7% and £3;7® leave a little to improve. We leave
open, whether an ordinary fat tree has an efficient embedding into a 3-dimensional
SMOB (considering the case 3 — 2 is perhaps not as interesting). One could also
consider embedding other kind of fat trees.

3. CONCLUSIONS
We studied embedding of meshes, fat meshes, coated meshes, meshes of trees,
hypercubes, butterflies and fat trees into a d-dimensional regular static mesh of op-
tical buses. We observed that in all cases it was possible to find a better embedding
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(and thus emulation) than what is suggested by the general results of Lemmas 1.5
and 1.6. For all but the fat tree embeddings, ¢4 = ¢. = 1 and thus by Lemma

1.

1 there exists such an emulation on each of the embeddings that ¢, = 1. For

the embeddings £7;* and £7;*% there exist emulations requiring 2 and 4 steps,
respectively.
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