Testing Business Component Systems
T. Toroi, A. Eerola, J. Mykkéinen

Report A/2002/1

ISBN 951-781-261-2
ISSN 0787-6416

UNIVERSITY OF KUOPIO
Department of Computer Science
and Applied Mathematics

P.O.Box 1627, FIN-70211 Kuopio, FINLAND

Testing business component systems

Tanja Toroi
University of Kuopio

applied mathematics
P.O.B 1627, FIN-70211 Kuopio
+358-17-163767

tanja.toroi@cs.uku.fi

ABSTRACT

Nowadays it is demanded that software system fulfils more quality
requirements, especially in the health care and other safety critical
systems. In this paper we present an effective and practical
method for testing business component systems step by step. We
utilize components of different granularity levels. The advantages
of component-based systems are the possibility to master
development and deployment complexity, to decrease time to
market, and to support scalability of software systems. Also the
great number of dependencies which occur in object-oriented
approach can be mastered better, because majority of the
dependencies between classes remain inside one component
where the number of classes is much less than in the total system
or subsystem. The abstraction levels decrease the work needed in
testing, because the testing work can be divided into sufficiently
small concerns and the previously tested components can be
considered as black boxes, whose test results are available.
Furthermore, errors can be easily detected, because not so many
components are considered at one time.

In our method, components of different granularities are tested
level by level. The idea of the method is that at each level white
box testing and black box testing occur alternately. We define test
cases based on component granularities at distributed component,
business component and business component system level. Test
cases are derived from use cases or contracts. We use a
dependency graph, which shows dependencies between the same
granularity components. The dependency graph is used to assure
that the whole functionality of the component has been covered
by test cases.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging — Testing
tools.

D.2.9 [Software Engineering]: Management — Sofiware quality
assurance.

Anne Eerola
University of Kuopio
Department of computer science and Department of computer science and

applied mathematics
P.O.B 1627, FIN-70211 Kuopio
+358-17-162569

anne.eerola@cs.uku.fi

Juha Mykkanen
University of Kuopio
Computing Centre
HIS Research & Development Unit
P.O.B 1627, FIN-70211 Kuopio
+358-17-162824

juha.mykkanen@uku.fi

General Terms
Design, Reliability, Theory, Verification.

Keywords
Testing, distributed component, business component, business
component system, distribution tiers, layers, interfaces,
dependency

1. INTRODUCTION

Component software technologies have been exploited in software
industry more and more. The crucial objectives in this approach
are decreased time to market, efficiency in software production,
quality and reusability of software and its components.
Distribution of software and its production is the fact today.
Software providers do not necessarily want to implement all the
properties of the system by themselves but they want to specialize
in their strategic competitive edge and buy other properties as
ready-made COTS (commercial-off-the-shelf) components. In
situations like this testing and documentation are even more
important than in conventional software projects. Customers of
software require quality such as correctness and reliability in
addition to functional properties of the software system. This is
especially true in health care information systems and in other
safety critical systems.

There are several definitions of the concept of testing [19]. In this
research, testing means that the software is executed in order to
find errors. Thus debugging process is not included in testing,
although it is a quite near to it. In order to develop quality
business components, system testing must verify that the software
product operates as documented, interfaces correctly with other
systems, performs as required, and satisfies the user's needs [26].

Although component technologies have been widely introduced in
research and industry only a few investigations have been
dedicated to testing of component based systems. Even less have
integration testing and interoperability testing been considered in
research papers. Unlike traditional software developers,
component developers are in most cases independent software
vendors who may not know all the future uses of their
components [26]. Only the known uses can be tested beforehand.
In order to increase the reusability we must carefully define the
provided interfaces and constraints, i.e. runtime environment and
dependencies, of the components.

Traditional techniques such as data flow testing, mutation testing,
and control flow testing are not very well applicable when testing
component systems. Testing distributed component-based systems
requires that heterogeneity, source code availability,
maintainability and complexity need to be considered [27].

Information systems must collaborate with each other in order to
fulfil the requirements of stakeholders. The collaboration is
achieved by integrating the systems. The integration at the system
level can be done utilizing different interaction models, for
example, integrated, bus-based, bridged, and coordinated [5].

Users require high quality and reliability. As a consequence, the
information system needs a comprehensive inspection and testing
process. Testing the interoperability and quality of an information
system as a big bang in a deployment or introduction stage is
difficult, costly or even impossible. The reasons of this are the
heterogeneity, complexity, diversity of systems, and reuse of
COTS, for which code is not available. For producing quality
software the quality must be emphasized right at the beginning of
the projects and the quality assurance must occur similarly while
building and buying the components of the software system. For
this reason, the software process should include high quality
inspection and testing policies, which verify that all the functional
and non-functional requirements of the stakeholders will be in the
final product and the product does not have not-needed
properties. Thus forward and backward traceability is required
[4]. The requirements of stakeholders are gathered and then used,
at the analysis level, in order to derive use cases and conceptual
class hierarchy, which are then used as a starting point at the
design phase [18.2].

Wu et al introduced that errors in component-based system can be
inter-component faults, interoperability faults in system level,
programming level, and specification level, and traditional faults
[28]. They have also presented a maintenance technique for
component-based software, where static analysis is used to
identify the interfaces, events and dependence relationships that
would be affected by the modifications. The results obtained from
the static analysis are used to help test case selection in the
maintenance phase. In this technique, they do not separate
different dependency relationships.

We propose an improvement where dependencies inside one
component do not interfere with external dependencies and
present an effective and practical method for testing business
component systems step by step. We consider functional
requirements only. We utilize components from different
granularity levels defined in Herzum and Sims [5]. The
granularity hierarchy means that a business component system is a
composition of business components, which in turn are
compositions of lower level components. The advantages of this
approach are the possibility to master development and
deployment complexity, to decrease time to market, and to
increase scalability of software systems. Also the great number of
dependencies which occur in object-oriented approach [25] can be
mastered better, because majority of the dependencies between
classes remain inside one component where the number of classes
is much less than in the total system or subsystem. The abstraction
levels decrease the work needed in testing, because the testing
work can be divided into sufficiently small concerns and the
previously tested components can be considered as black boxes,
whose test results are available. Furthermore, errors can be easily

detected, because not so many components are considered at one
time.

The remainder of the paper is organized as follows: In Section 2
we describe the component properties and the component
granularity levels. Our testing method in general is given in
Section 3 and in Section 4 is the testing process for different
granularity components. Related work is considered in Section 5.
A conclusion is finally given in Section 6.

2. PROPERTIES OF COMPONENTS

2.1 Interfaces and Contracts

The definition of a component stresses its autonomy [5, 22]. Each
component forms a cohesive and encapsulated set of operations
(or services). A component should have minimal and explicitly
defined relationships with other components minimizing coupling
[13]. The semantics of the relationships should be defined as well
as the syntax. This leads to the definition of interfaces of the
component, which hide internal properties of the component. The
interface of the component specifies the list of provided
operations, for each operation the list of parameters, and for each
parameter the type and direction (in or out). Interface Definition
Language (IDL) [14] is wusually utilized in the interface
specification, where semantics can be described using
preconditions, postconditions, and invariants [22].

However, components can not be isolated. A component should
not be too wide and complicated. Thus it can not perform all the
things by itself, but it collaborates with other components: First, a
component may call other components by sending a message. In
this paper, we consider only synchronous messaging. Thus the
caller of the operation waits for the result. Each interface of the
component has a dependency relationships of its own. Second, a
component needs an execution environment, i.e. a socket, into
which it plugs and within which it executes. The provided
interfaces, the required dependencies for each interface and the
specified execution environments of the component form a
contract between a called component and a component caller
[22]:

Contract = interface, dependencies, environment, specification.

A component can have several contracts. Different customers
want different properties and at the maintenance stage version
management can be solved by making new versions of the
contracts. Similarly contracts are a profitable document between
the producer of a component and customers, who want to buy the
component. This contract can be utilized in build-time, too.

2.2 Granularity of Components

By partitioning a given problem space into a component form we
utilize, in this research, the business component approach
introduced by Herzum and Sims [5]. Components of different
granularities, i.e. distributed component, business component, and
business component system are described in the following
chapters.

2.2.1 Distributed Component

The lowest granularity of software component is called a
distributed component. A distributed component (DC) has a well-
defined build-time and run-time interface, which may be network
addressable. A DC can be deployed as a pluggable binary
component to the socket given in the contract. Further a
distributed component may have dependency relationships to
other components. A DC can have one or more interfaces, which
define the operations component offers and the parameters needed
when calling the component. Thus an interface of DC can be
defined as follows:

Interface = (operation, (parameter, type, [injout])")"

User interface implementation should be separated from business
logic implementation and database access. This leads to the
definition of categories for distributed components, i.e. user DC,
workspace DC, enterprise DC and resource DC. User DC differs
from the other DCs because it does not have network addressable
interface but it has user interface [20]. In object-oriented approach
the distributed component usually consists of classes and
relationships between them, but traditional programming
approaches can be used, too. Thus a DC hides the implementation
details from the component user. Component technologies offer
usually a degree of location transparency and platform and
programming language neutrality. For example, a distributed
component could be lab order entry (see Fig. 1).

Oo— _
interface O——F [ah Order Entr dependencies
o—I| Y
—
L

component execution environment

Figure 1. Lab Order Entry distributed component

2.2.2 Business Component

The medium granularity of software component is called a
business component. A business component (BC) consists of all
the artifacts necessary to represent, implement, and deploy a given
business concept or business process as an autonomous, reusable
element of a larger distributed information system. From the
functional designer's point of view a business component can
consist of user, workspace, enterprise and resource tiers. Each tier
consists of zero or more DC whose category is the same as the
tier. User and workspace tiers form a single-user domain.
Enterprise and resource tiers form a multi-user domain.

In figure 2 a business component and the execution environment
(CEE) for that component is presented. A distributed component
can send a message to a component, which is at the same or at the
lower tier as itself. Cyclic messaging should be avoided, because
it violates normalization. Events, for example, error messages,
such as database access violation, can go from lower tier to the
upper tier. From the above follows that a business component is a
composition component, whose parts are distributed components.
The runtime interface of a BC is the union of all interfaces of its

e
|
O
| %)
| User ! o | user interface o
| @ | framework w
— O
I ~—
Dependency LS ! E
oH £
o 5 locacee S
S | | Werkspace |/ (Java, COM) 5
I
S [@
o | c
§ o | E
| 3
1 [5]
2 o,' enterprise 13
2 1| | Enterprise | ! CEE et
o | g
| Q.
I L €
| . o
I persistence]
' | Resource | | _|framework
|
|
|
|
|
|

Figure 2. The business component and the component
execution environment (Adapted from [S]).

distributed components, which are visible outside the boundaries
of the BC. A business component could be, for example, lab test,
which could contain different tests and the structure of results.

2.2.3 Business Component System

The largest granularity of software components is called a
business component system. A business component system (BCS)
is a composition component, whose parts are business
components that constitute a viable system. The runtime interface
of BCS is the union of all interfaces of its business components,
which are visible outside the boundaries of the BCS. Business
components can be classified into functional layers, for example,
process, entity, and utility. In figure 3 there is Lab test business
component system. At the process layer there is one business
component, Lab test workflow. At the entity layer there are Lab
test, Test result analyzer, Department and Patient business
components. Utility layer business components include Lab test
codebook and Addressbook. Database integrity manager and
Performance monitor are auxiliary business components. As
before, messages can go from the upper level to the lower level.
The granularity of components gives controllability to the testing
process as can be seen in the following chapters.

3. TESTING PROCESS
3.1 Testing Method

In this paper we present a testing method, where components are
tested from the lowest granularity to the highest granularity.
Testing process is analogous at each level and the test results of
lower levels are available while testing the upper levels. Thus the
test manager can see the quality of components while planning the
test of a composition component. It is a known fact in practice
that software parts that contain most errors are risky areas for

Lab Test Business

Component systlem

Process
Lab Test

Workflow

) / X Performance
Entity Monitor

Lab Test | |Department Patient

.

Test Result
Analyzer

[T 1

Utility

Lab Test
CodeBook

Integrity
Manager

| Database

AddressBook

Figure 3. Lab Test Business Component System

errors also in the future. The idea of the method is that at each
level white box testing and black box testing occur alternately:

e First, in unit testing phase the internal logic of the
component is tested as a white box. Second, the external
interface of the component is tested. Here the component is
considered as a black box and it is tested in the execution
environment, where it should work.

e In integration testing phase the component is considered as a
composition component of its internal components. Now, the
results of previous steps are available. First, the co-operation
of internal components of the composition component is
tested. Here, the internal components are black boxes.
Second, the interface of the composition component is tested.

The alternation, presented above, is also true if we consider the
role of component provider and component integrator:

The provider of the component needs white box testing for
making sure that the component fulfils the properties defined in
the contract and black box testing for making sure that the
interface can be called in environments specified in contract.

The third-party integrator integrates self-made and bought
components into a component-based system. He uses black box
testing for making sure that he gets a product that fulfills
requirements. Integration testing of self-made and bought
components means that calling dependencies of components are
considered. Thus from the systems point of view the internal logic
of the system is considered. We denote this as white box testing
although code of internal components is not available. At last
external interfaces of the system are tested and here the total
system is considered as a black box.

We can also consider a customer who buys a component-based
system. He does not know the internal logic of the system. Thus
he uses black box testing techniques for acceptance testing.

In the following chapters we first define test cases (chapter 3.2).
When executing the system with carefully chosen test cases tester
can see if the user requirements are fulfilled. Test cases are
derived from the use cases or contracts. Furthermore, we need a
dependency graph (chapter 3.3), which shows if all the parts of
the system have been covered by the test cases.

3.2 Test Cases
3.2.1 Definition of Test Cases

A test case is generally defined as input and output for the system
under test. Kaner [7] describes that a test case has a reasonable
probability of catching an error. It is not redundant. It's the best of
its breed and it is neither too simple nor too complex. A test case
is defined in Rational Unified Process [9] as a set of test inputs,
execution conditions, and expected results developed for
particular objective, such as to exercise a particular program path
or to verify compliance with a specific requirement. We insert the
granularity aspect in the definitions of test cases:

o Test case at the business component system level is derived
based on an action flow between business components and
users.

e Test case at the business component level is derived based on
a sequence of operations between distributed components.

e Test case at the distributed component level is derived based
on a method sequence between object classes.

3.2.2 Use Cases and Contracts

Use cases and scenarios provide means for communication
between users and a software system [6, 21]. Thus they are useful
while deriving the responsibilities of BCS. The responsibilities of
total BCS, which is considered as a composition component, are
divided into responsibilities of each internal BC of BCS,
recursively if needed. Thus we can suppose that for BCS and BC

we have use case descriptions, which show those needs of the
stakeholders that are addressed to that component. With use cases
we know how to actually use the system under test. Every use case
must have at least one test case for the most important and critical
scenarios.

However, use case diagrams and scenarios usually show only the
communication between users and a software system. Thus the co-
operation of human actors is not presented. We propose that the
definition of use case diagram is extended to contain human
actions as well as automated actions [8]. Consequently, action
flows can be derived from these use case diagrams and it is
possible to test that human workflow fits together with actions of
BCS.

Next, we present examples of an action flow, an operation flow
and a method sequence. They are used when test cases are derived
for BCS, BC and DC. Examples are simplified, but they describe
how abstraction levels differ when moving from BCS level to DC
level. At the DC level test cases are the most accurate and
detailed.

For example, an action flow of Lab Test BCS (see Fig. 3) could
be following (actors in parenthesis):

e Create or choose a patient; (human and Patient BC)

e Examine patient; (human and Patient BC)

e Create a lab order; (human and Lab Test BC)

e Send the lab order to the lab; (human and Lab Test BC)
e Reception; (human and Lab Test BC)

e Take a sample; (human)

e Analyze the sample and return results; (human and Test
Result Analyzer BC)

e Derive reference values; (Test Result Analyzer BC)

e Save lab test results and reference values; (human and Lab
Test BC)

An operation sequence of Lab Test BC could be following;:
e Input a patient number; (human and user DC)

e Find lab test results with reference values;
(enterprise and resource DC)

e Output lab test results with reference values; (user DC)
e Evaluate results; (human)
e Decide further actions; (human)

e Send lab test results and advice for further actions to the
department; (human, user and enterprise DC)

A method sequence of Lab Test user DC could be following:
e Input a patient number; (human and Patient class)

e Choose an activity lab test consulting;
(human and Menu class)

e Send message “find lab test results” to enterprise DC;
(proxy)

e Receive lab test results; (proxy)
e Output lab test results; (Lab Test class)

e Output reference values; (Reference class)

The other possibility to define test cases is to utilize contracts,
specifying the operations offered by the components. In testing we
must have a requirement document in which each operation of the
interfaces has been described in detail. There we get input
parameters of the operations and their domains. For each
operation each parameter's input domain is divided in so called
equivalence classes [15]. Equivalence partitioning is always the
tester's subjective view and thus may be imperfect. If the
operation has many input parameters then the equivalence classes
for the whole input can be designed as a combination of the
equivalence classes. This leads to an explosion in the number of
equivalence classes. Test cases are selected so that at least one test
input is selected from every equivalence class. So we get testing
which is on one hand effective and covers customers'
requirements and on the other hand it is not too arduous and
complex. Redundancy is also as minimal as possible. For
distributed components in resource, enterprise and workspace tier
contracts may be the only possibility to define test cases. But it
should be remembered that contracts do not specify the
cooperation between more than two components. Thus they are
not sufficient while testing action flow of stakeholders and the
usability of the whole system.

Finally we check that test cases traverse all the paths of all the
dependency graphs as presented in the next chapter.

3.3 Dependency Graph
3.3.1 General

Test cases, which are defined by use cases or contracts do not
necessarily cover the whole functionality of the system. Besides
use cases and contracts, we also need the dependency graph,
which shows dependencies between the components of the same
granularity level. If we do not know all the dependencies we do
not know how to test them. We use the dependency graph to
assure that the whole functionality of the component has been
covered by test cases. Without dependency graph there may
remain some critical paths that have not been executed or there
may be some paths that have been tested many times. Redundant
testing increases always the testing costs. Then test cases have to
be removed. If there are paths, which are not traversed at all we
must examine carefully if the components on those paths are
needless for some reason or we have to add test cases so that all
the paths will be traversed.

The following chapter describes how to compose the dependency
graph and provides an example. The algorithm creates a
dependency graph for each external interface of the composition
component. So testing and maintaining component-based systems
is easier than if we had only one big graph.

3.3.2 Dependency Graph Creation

We create a graph based on dependencies between different
components in a composition component. Term composition
component can either be a business component or a business
component system. If it is a business component, dependencies
are between distributed components and if it is a business
component system, dependencies are between business
components. A node in a graph represents a component. A
directed edge from component A to component B means that

component A depends on component B (component B offers
functionality to component A). The inner for-loop checks
dependencies only at the same tier or tiers below because
messages from one component to another go from upper to lower
tier. The outer for-loop checks all the external interfaces the
composition component has and creates a graph for each interface.
Our algorithm follows the breadth first search algorithm.

Algorithm: Creates composition component dependency graphs.
Input: A composition component and its contracts.

Output: Composition component dependency graphs.
Variables:

e A set called includes all the components that have been
traversed.

e A set not visited includes components that have not been yet
traversed.

e A set targets includes components that have already been as
target components.

for each external interface of a composition component {
start with the component ¢, to which the interface refers;
create an edge from the interface to cy;

not_visited = {all components in the composition
component};

called = {co};
targets = J;
while not_visited # & and called - targets # & {
select target component from the (called - targets) set;

for each component ¢ in the composition component in
the same tier or below than target {

if target depends on a component ¢ then
called = called U c;
create an edge from target to c;
}
not_visited = not_visited - target;

targets = targets U farget,

-

}

If BCS includes components, which can not be reached by any
interface, those components do not belong to the graph. If there
are cycles in the graph the algorithm reveals them as can be seen
in the following example.

3.3.3 Example

In this chapter there is an example of using the previous
algorithm. In figure 4 there are distributed components A - F and
their dependencies in a 3-tiered business component. Let's start
with the user level external interface. It refers to the component A.

O

// create an edge from the interface to ¢,

O— User/Workspace
O—%IJC | ;l D |;| E | Enterprise

IJFLl Resource

Figure 4. Graphical view of distributed components in a
business component

not visited = {A,B,C,D,E,F}

called = {A}

targets = &

not visited # & and called - targets = {A}-&J = {A}
target = {A}

called = {A} UB = {AB}

called = {A,B} U {C} = {A,B,C}

component A has no other dependencies

not_visited = {A,B,C,D,E.F} - {A} = {B,C,D.E,F}

targets = J U {A} = {A}

not visited # & and called - targets = {A,B,C}- {A} = {B,C}
target = B

no dependencies

not _visited = {B,C,D,E,F} - {B} = {C,D,E,F}

targets = {A} U B = {A,B}

not _visited # & and called - targets = {A,B,C}- {A,B} = {C}
target = C

called = {A,B.C} UD={A,B,C,D}

no other dependencies

not visited = {C,D,E)F} - {C} = {D,E,F}
targets = {A,B} U C= {A,B,C}

not_visited # & and called - targets = {A,B,C,D}- {A,B,C} = {D}
target = {D}
called = {A,B,C.D} UE = {A,B,C.D,E}

no other dependencies

not_visited = {D,E,F} - {D} = {E,F}

targets = {A,B,C} U D= {AB,C,D}

not visited # & and called - targets = {A,B,C,D,E,F}- {A,B,C,D}
={E,F}

target = {E}

called = {A,B.C,D.E.F} uD = {AB,C.D,E,F}

no other dependencies
not visited = {E,F} - {E} = {F}
targets = {A,B,C.D} U E = {A,B,C.D.E}

not visited # & and called - targets = {A,B,C,D,E,F}-
{A.B.C.D.E} = {F}

target = {F}

no dependencies

Next the outer for-loop examines other external interfaces; in this

case enterprise level interface, which refers to component C.
Algorithm creates the following graph for this interface.

3.3.4 Selecting Test Cases

When we have created dependency graphs we have to create test
cases based on those graphs. Test cases are created so that as
many paths in a graph as possible are covered by one test case.
This is called path coverage. Test suite satisfies 100% path

coverage if all the paths in the dependency graphs have been
executed. We should remember that the graphs are not very large
because of components' granularity and because interfaces act as
centralized connection points. So the complexity is lower if
compared to the graphs of traditional or object-oriented software.
We will study automatic test case selection in the future research.

4. TESTING COMPONENTS OF
DIFFERENT GRANULARITIES

4.1 Distributed Components

Technical heterogeneity means use of different component
technologies, programming languages and operating system
environments. Productivity and flexibility of software
implementation is increased by separating the functional logic
from the runtime environment (socket) and the dependencies of
the component technology, i.e. interface implementation and
proxies which implement dependencies [5]. This profits the
testing process, too. The functional logic is tested separately from
interface implementation and proxies, which are substituted with
driver and stub correspondingly if needed. Testing a distributed
component depends on implementation. If a DC has been
implemented by traditional techniques we can use traditional
testing techniques and if it has been implemented by object
oriented techniques we can use object oriented testing methods. In
object oriented approach the functional code is usually
implemented with classes and relationships between them. Testing
means that methods and attributes of each class must be tested as
well as the inheritance relationship between classes and
association and aggregation relationships between objects. At the
DC level test cases are usually derived from contracts. The
execution of an operation, defined in the contract of DC, causes
usually collaboration between several objects, which
communicate with each other by sending messages. Thus the
method sequence is one important subject to be tested. The
objects dependency graphs can be derived analogously to the
method presented in chapter 3.3 and it should be consistent with
UML's collaboration diagrams defined in analysis stage.
Furthermore, when we are testing a DC implemented by object
oriented methods we can use several testing techniques [11]. For
object state testing there are methods like [12, 23] and for testing
inheritance relationship between classes there are methods like
[16,10].

Interfaces of DC must be tested locally and from the network. For
user DCs the usability testing is important as well as the
functionality tests. Testing resource tier DCs is more difficult if
several databases or independent islands of data [5] are used.

4.2 Business Components
Vitharana & Jain [26] have presented a component assembly and
testing strategy:

“Select a set of components that has maximum number of calls to
other components within the set and minimum number of calls to
other components outside the current set.

Of the remaining components, select a component (or a set of
components) that has the maximum number of interactions with
methods in the current application subsystem.”

The strategy has been illustrated by an example but it has not been
proved. However, the authors critique the strategy: The logical
relationships between components should be taken into
consideration while developing an integration test strategy.

We propose that in assembly and testing the business logic should
be taken into account. Business components form a coherent set
of properties, thus to test them as a whole is worthwhile. A
business component is integrated from distributed components.
Thus testing business component means:

e First, the integration testing of those distributed components,
which belong to the business component is performed.

e Second, the external interface of the business component is
tested.

While integrating a BC we propose that the integration strategy by
Vitharana and Jain is modified as follows:

The assembly and testing go in two parallel parts:

In single-user domain part, the user and workspace tiers are
integrated:

e It is profitable to start integration from user tier.
Consequently, the comments from stakeholders are received
as soon as possible.

e The workspace tier should be integrated next, because it is
connected with the user tier.

In multi-user domain part, the resource and enterprise tiers are
integrated:

e The resource tier is integrated first, because the DC in
resource tier does not send messages to any lower tier.

e The enterprise tier is integrated next because it sends most
messages to the resource tier.

Finally the total BC is integrated by combining the results of the
above two parts. The above approach has several advantages. For
example time to market decreases and controllability increases.

Testing business components is divided into two phases:
Phase 1:

BC's internal logic is considered using dependency graph
similarly as before. Here each DC, which belongs to the business
component is a black box, but BC itself is considered as a white
box. Interfaces and dependencies are tested. The dependency
graph is generated using the algorithm presented in chapter 3.3. If
some of the DCs is not ready and has not passed through unit
testing it is substituted with a stub.

The best way to derive test cases for BC is to utilize use cases.
Because BC is a coherent set of operations of the business
concept it is plausible that the most important and critical use
cases of BC are defined at the analysis stage. Thus test cases can
be built according to these use cases. The distributed components
in user tier are the only components for which the user gives the
input. For other BC-external interfaces the inputs come from some
other systems or from the network. The values needed in BC’s
internal dependencies are calculated inside DCs. Normal cases are
tested before exceptions [21]. While considering exceptions the
events go from the lower level to the upper level. For example,
when an exception is noticed, a resource DC sends an event to an

enterprise DC, which further sends an event to a user DC. This
means that the algorithm forming dependency graph needs to be
slightly modified while testing exceptions.

If use cases are not available, the contracts of the distributed
components, which are visible outside the boundaries of BC are
used. In this case the designer should decide the order of the
operations.

Phase 2:

BC's external interface, especially the network addressability,
should be tested. Here the BC is a black box. Partly the same test
cases as before can be used. Now the internal logic is not
considered, but the correspondence of operation calls with input
parameter values is compared to the return values. Thus all the
contracts of BC must be tested.

4.3 Business Component Systems

Business component system is assembled and tested using strategy
presented in [26]. Utilities are often ready-made COTS, which
need only acceptance testing. This means that the interface is
tested and the component is seen as a black box. Entity BCs call
utilities, thus entities are tested next. Process BCs call entities,
thus they are tested last. Thus the order is: first utility BC, second
entity BC, third process BC.

Testing business component system means:

e First, integration of those business components, which
belong to the business component system is tested.

e Second, the external interface of business component system
is tested.

In integration testing BCS's internal logic is considered. Here each
BC of BCS is a black box, which has been unit tested. BCS itself
is considered as a white box. Interfaces and dependencies are
tested utilizing dependency graph similarly as before.

Test cases of BCS are constructed using use cases, which show
the action flow of users of the BCS. Of course, it is possible that
the inputs come from some other system, but these are considered
similarly to human inputs.

It is sufficient to test that the most important and critical action
flows of users go through without errors and that BCs call each
other with right operations and parameters. Exception cases [21]
are tested after normal cases. While considering exceptions an
entity BC can send events to a process BC. This means that
forming dependency graph needs to be slightly modified. The
contracts of components specify what the components offer, not
what the users need and not the order of users actions, thus
contracts of BCs are not useful while testing BCS. At last, BCS's
external interface is tested with local calls and calls over network.
Here all the contracts of BCS must be tested.

In conclusion, before testing the whole business component
system each business component in it is tested. Before a business
component is tested each distributed component in it is tested.
The dependencies considered stay all the time at one component
granularity level.

5. RELATED WORK

According to Weyuker's [24] anticomposition axiom adequately
testing each individual component in isolation does not
necessarily suffice to adequately test the entire program.
Interaction cannot be tested in isolation. So, it is important to test
components' interaction in the new environment as components
are grouped together.

Our work has got influence from Wu et al. [28]. However, we
wanted that dependencies stay at the same abstraction level, i.e.
they must not go from upper level to the lower level or vice versa
in testing. In presentation of Wu et al. there is no clear separation
of abstraction levels. For example, a dependency between
components causes dependencies between classes. The interface
implementation and functional logic are tested separately and not
in order. In our algorithm, dependencies stay at the same
granularity component level: in system level, in business
component level, or in distributed component level. The
dependencies between classes in object oriented systems need to
be considered only at the lowest level. This reduces the
dependencies and especially those dependencies, which must be
considered at the same time.

Regnell et al. have considered use case modeling and scenarios in
usage-based testing [17]. They investigate usage of software
services in different users and users' subtypes. They consider
dependency relationships, where relationships go from component
level to the class and object level as in [28].

Gao et al. have presented Java-framework and tracking model to
allow engineers to add tracking capability into components in
component-based software [3]. The method is used for monitoring
and checking various behaviors, status performance, and
interactions of components. It seems that the results of Gao et al.
could be added in our approach in order to support the debugging
aspects.

Our research emphasizes testing functional requirements of
business component system. The quality requirements of
stakeholders such as security, response times and maintainability
must be tested too. This has been considered in [1]. Different
quality properties need to be tested separately although scenarios
can be utilized here too. Testing quality requirements leads to the
consideration of architectures.

6. CONCLUSION

We have presented a method for testing functionality of business
component systems. For testing functionality we utilize test cases
and dependency graphs. Test cases are derived from use cases or
contracts.

Why do we need test cases and dependency graphs? To assure that
the whole composition component's functionality has been
covered by test cases it is necessary to use the dependency graphs.
If we only test that the test cases are executed right, they give right
result, and leave the system in consistent state, there may remain
some critical paths in the system that have not been executed or
there may be some paths that have been tested many times. If
there are paths, which are not traversed at all our test suite does
not correspond the functionality of the system. In this case, we
must examine carefully if

e new test cases should be inserted or

e the components on non-traversed path are needless for some
reason.

In our method, components of different granularities are tested
level by level. Thus in integration testing the dependencies stay
inside a business component system at the business component
level. While testing business components the dependencies stay at
the distributed component level. At distributed component level
we consider the dependencies between classes. From the above
follows that dependencies stay simple and at the same level, and
the dependencies tested at the same time are similar, except at the
DC level. Thus testing work is divided into small pieces and the
amount of testing work decreases. This facilitates regression
testing too.

Our work has been done at the University of Kuopio as a part of
PluglT research project in which our testing method will be
evaluated in practice. The validation of the method containing
also theoretical proof of decreasing the work in testing in practice
is going on at the moment. The goal of PlugIT project is to reduce
threshold of introduction of health care information systems by
defining more effective and open standard solutions for system
level integration. Our concern is for the quality assurance and
testing of health care information systems.

7. ACKNOWLEDGMENTS

We would like to thank Hannele Toroi, testing manager at Deio
for giving us insight into test implementation and testing problems
in practice. This work is part of PlugIT project, which is funded
by the National Technology Agency of Finland, TEKES together
with a consortium of software companies and hospitals.

8. REFERENCES

[1] Bosch, J. Design and use of software architectures. Adopting
and evolving a product-line approach. Addison-Wesley,
2000.

[2] Fowler, M., and Kendall, S. UML Distilled Applying the
standard Object Modeling Language. Addison-Wesley, 1997.

[3] Gao, J., Zhu, E., Shim, S., and Chang, L.: Monitoring
software components and component-based software. In
Proc. of 24" Annual International Computer Software &
Applications Conference, 2000.

[4] Gotel, O. Contribution structures for requirements
traceability. PhD thesis, University of London, 1995.
http://www.soi.city.ac.uk/~olly/work.html.

[5] Herzum P., and Sims, O. Business Component Factory.
Wiley Computer Publishing, New York, 2000.

[6] Jacobson, Christerson, M., Jonsson, P., and Overgaard, G.
Object-Oriented Software Engineering — A Use Case Driven
Approach. Addison-Wesley, Harlow, 1995 2™ edn.

[7] Kaner, C. Testing computer software. John Wiley & Sons,
New York, 1999.

[8] Korpela, M., Eerola, A., Mursu, A., and Soriyan, HA.: Use
cases as actions within activities: Bridging the gap between
information systems development and software engineering.

Abstract. In 2™ Nordic-Baltic Conference on Activity Theory
and Sociocultural Research, Ronneby, Sweden, 7-9
September 2001.

[9] Kruchten, P. The Rational Unified process, an introduction.
Addison-Wesley, 2001.

[10]Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima, Y., and
Chen C.: Change impact identification in object oriented
maintenance. in Proc of IEEE International Conference on
Software Maintenance 1994, 202-211.

[11]Kung, D., Hsia, P., and Gao, J. Testing object-oriented
software. IEEE computer society, USA, 1998.

[12]Kung, D., Lu, Y., Venugopalan, N., Hsia, P., Toyoshima, Y.,
Chen C., and Gao, J.: Object state testing and fault analysis
for reliable software systems. In Proc. of 7" International
Symposium on Software Reliability Engineering, 1996.

[13]Meyer, B. Object-oriented software construction. Prentice
Hall, London, 1988.

[14]Mowbray, T., and Ruh, W. Inside CORBA®: Distributed
object standards and applications. Addison-Wesley, 1997.

[15]Myers, G. The art of software testing. John Wiley & Sons,
New York, 1979.

[16]Perry, D., and Kaiser, G.: Adequate testing and object
oriented programming. Journal of Object-Oriented
Programming, Jan/Feb, 1990, 13-19.

[17]Regnell, B., Runeson, P., and Wohlin, C.: Towards
integration of use case modelling and usage-based testing.
The Journal of Systems and Software, 50, 2000, 117-130.

[18]Robertson, S., and Robertson, J. Mastering the requirements
process. Addison-Wesley, 1999.

[19] Roper, M. Software testing. McGraw-Hill, England, 1994,

[20] Sametinger, J. Software Engineering with Reusable
Components. Springer-Verlag, 1997.

[21] Schneider, G., and Winters, J.P. Applying use cases.
Addison-Wesley Longman, 1998.

[22] Szyperski, C. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, Harlow, 1999.

[23] Turner, C.D., and Robson, D.J.: The state-based testing of
object-oriented programs. In Proc. of IEEE Conference on
Software Maintenance 1993, 302-310.

[24] Weyuker, E.: The evaluation of program-based software test
data adequacy criteria. Communications of the ACM, 31:6,
June 1988, 668-675.

[25] Wilde, N., and Huitt, R.: Maintenance Support for Object-
Oriented Programs. IEEE Transactions on Software
Engineering, 18, 12, Dec. 1992, 1038-1044.

[26] Vitharana, P., and Jain, H.: Research issues in testing
business components. Information & Management, 37, 2000,
297-309.

[27]Wu, Y., Pan, D., and Chen, M-H.: Techniques for testing
component-based software. Technical Report TR00-02, State
University of New York at Albany, 2000.

[28] Wu, Y., Pan, D. and Chen, M-H. Techniques of maintaining
evolving component-based software. In Proceedings of the
International Conference on Software Maintenance, San
Jose, CA (USA), October 2000

