Declarative XML Wrapping of Data

Merja Ek, Heli Hakkarainen,
Pekka Kilpelainen, Tommi Penttinen

Report A/2002/2

ISBN 951-781-262-0

UNIVERSITY OF KUOPIO

Department of Computer Science and Applied
Mathematics

P.O.Box 1627, FIN-70211 Kuopio, FINLAND

Declarative XML Wrapping of Data

M. Ek, H. Hakkarainen, P. Kilpelainen, T. Penttinen
Department of Computer Science and Applied Mathematics
University of Kuopio, Finland

{ekmerja, hihakkar, kilpelai, tpenttin}@cs.uku.fi

ABSTRACT

XML provides a standard technology for archiving informa-
tion and for transferring it between co-operating systems as
well-formed documents. Translation of legacy data to an
XML-based representation, often called XML wrapping”,
is a recurring practical problem in the utilization of XML.
We attack this problem by describing a declarative XML
wrapper description language called XW (XML Wrapper).
XW is designed to be a convenient language for describing
typical XML wrapping of data. The design of the language is
influenced by a number of XML technologies, such as XML
Namespaces, XML Schema, and XSLT. We are currently ap-
plying XW for automating the conversion of medical mes-
sages and mass-printing material to XML documents. We
discuss the implementation techniques and principles of ex-
ecuting declarative XW wrapper descriptions. The XW im-
plementation provides a SAX (Simple API for XML) inter-
face, which means that it can be easily and efficiently used
within other applications to access non-XML data sources as
if they were XML documents seen through an XML parser.

Categories and Subject Descriptors

1.7.2 [Document and Text Processing]: Document Prepa-
ration—languages and systems, markup languages, standards;
J.7 [Computer Applications]: Computers in Other Sys-
tems—publishing

General Terms

Design, Languages

Keywords

XML, wrapping, data translation, conversion

1. INTRODUCTION

XML provides a standard technology for archiving infor-
mation and for transferring it between co-operating sys-
tems as well-formed documents. Exchange formats based
on XML are used in several application areas, especially in

* X %
*

*
* *
*

*
* 5 Kk

e-commerce. (See, e.g., [7]). XML is also used as a stan-
dard structured-document representation in document pro-
duction systems. Despite the increasing use of XML, many
non-XML data sources do persist.

Translation of legacy data to an XML-based representation,
often called ” XML wrapping”, is a recurring practical prob-
lem in the utilization of XML. Recent versions of many com-
mercial systems, e.g. Oracle [14], provide built-in interfaces
for externalizing their data as XML documents. Such built-
in interfaces are still relatively rare, though, and often ad-
hoc interfaces and translators are written for translating re-
sults of queries or data files to XML documents. It is both
tedious and costly to develop and to maintain such ad-hoc
wrappers. Converting and collecting data into structured
XML documents is estimated to often be the most costly
area in the entire document production process [19].

We address the problem of XML wrapping by describing a
declarative XML wrapper description language called XW
(XML Wrapper). XW is designed to be a convenient lan-
guage for describing typical XML wrapping of both textual
and binary data formats. It is based on describing the struc-
ture of the input data and the output document with an
XML document template, which should be an intuitive and
familiar model for users of XML. XW is designed for rela-
tively simple initial conversion of data to XML — it does not
try to be a complete document transformation language like,
say, XSLT [5]. An initial XW wrapping may be followed by
additional steps using standard XML processing technolo-
gies like SAX (Simple API for XML) [16], DOM (Document
Object Model) [9] or XSLT, if needed. On the other hand,
an initial conversion to XML is a necessary prerequisite for
applying any XML technologies.

We have developed a prototype implementation of XW. It
provides a SAX interface, which means that XW can be
easily and efficiently used within other applications to access
non-XML data sources as if they were XML documents seen
through an XML parser.

The rest of the paper is organized as follows. The design
of XW is discussed in Section 2. We are currently applying
XW for automating the conversion of medical messages and
mass-printing material to XML documents. Section 3 dis-
cusses these applications of XW. Interesting opportunities
of automating the processing of different mass-printing ma-
terials by applying XW wrappers to their control files are

outlined in Section 3.2. The implementation techniques and
principles of executing XW wrappers are discussed in Sec-
tion 4. Section 5 briefly reviews related work, and Section 6
is a short conclusion.

2. DESIGN OF XML WRAPPER

XW is the combination of a declarative wrapper description
language and an implementation, an X W processor, that in-
terpretes and executes XW wrapper descriptions. XW can
be used to describe the conversion of both non-XML text
and binary data into XML. An XW wrapper description is
itself an XML document and acts as a template for the re-
sulting XML document. It also embeds a description of the
structure of the input data. The actual conversion is done
by the XW processor that reads source data and converts it
into XML as per the instruction of the wrapper description.
Below, XW wrapper descriptions will simply be called XW
wrappers.

XW has been influenced by several XML technologies. XML
namespaces are used to separate XW elements and attributes,
the “reserved words”, from result elements and attributes.
XW elements and attributes are defined in namespace
http://www.cs.uku.fi/XW/2001. We normally use the pre-
fix xw to denote this namespace. The way the result is de-
scribed in XW through a template resembles that of XSLT.
Element creation through xw:ELEMENT was borrowed from
XSLT and XML Schema [18]. The types of fields supported
in XW for binary input, expression of alternative parts through
xw:CHOICE and occurrence indicators

xw:minoccurs and xw:maxoccurs were also inspired by XML
Schema.

An XW wrapper has the root element xw:wrapper that en-
closes the actual wrapper description. The type of input,
either text or binary, is specified through the attribute
xw:sourcetype. Character encoding for input and output
can be specified through attributes xw:inputencoding and
xw:outputencoding, respectively. An example is shown in
Fig. 1.

<xw:wrapper xmlns:xw="http://www.cs.uku.fi/XW/2001"
Xw:sourcetype="text"
xw:outputencoding="I50-8859-1">

</xw:wrapper>
Figure 1: An example of xw:wrapper element

With XW| input is hierarchically divided into nested parts.
Parts of textual input are identified by literal delimiting
strings or by character positions. With binary input the
parts are simply typed fields. Parts can be optional, alter-
native or repeated.

The structure of input data is modelled by the structure of
the wrapper. For each part in input there is a correspond-
ing element in the wrapper. Consecutive parts correspond
to consecutive elements. Delimiting strings for a part can
be specified in the corresponding element through XW at-
tributes. Attributes xw:starter and xw:terminator spec-

Part A Words of comment
alla2|a3

a4

Part B

b1l|b2

b31b4

cl]c2
c3lca

Figure 2: Sample data

ify strings that start and end a part, respectively. XW is
designed for easy selection of relevant parts of input. For
this reason non-matching parts of input are skipped when
searching for delimiters specified in an XW wrapper.

For example, in Fig. 2 we have input data consisting of three
parts starting with “Part A”, “Part B” and “---”. Each
one of these delimiters appears at the start of a line, a con-
dition that can be represented in XW by way of \~ . An
XW wrapper skeleton is presented in Fig. 3, with missing
definitions marked with ellipsis.

<xw:wrapper xmlns:xw="http://www.cs.uku.fi/Xw/2001"
xw:sourcetype="text"
xw:outputencoding="I150-8859-1">

<part-a xw:starter="\"Part A"> ... </part-a>
<part-b xw:starter="\"Part B"> ... </part-b>
<part-c xw:starter="\"---"> ... </part-c>

</xw:wrapper>

Figure 3: XW wrapper skeleton for the sample data

Nested parts in input are described by nested elements in
the XW wrapper. That is, for a part and its corresponding
element, the sub-parts correspond to the child elements. If
the same delimiter starts, ends or separates all the sub-parts
of a part, the delimiter can be defined in the element corre-
sponding to the enclosing part through xw:childstarter,
xw:childterminator or xw:childseparator, respectively.
In the sample data all the three parts are divided into lines.
For this, XW provides a platform-independent notation \n
for the end of a line. The second line of the first part is fur-
ther divided into sub-parts by the separator ‘|’. The starter
of the first part has a comment following it that is of no
interest to us. In XW a part always begins right after its
starter, if one is specified, and thus the comment is consid-
ered the first sub-part. A part can be ignored, by using the
element xw:ignore, in the sense that the part is read from
the input but no output is produced.

Description of the first part, taken from the complete XW
wrapper, is shown in Fig. 4. For the result, refer to the whole
result XML document shown in Fig. 5. The definition
xw:childterminator="\n" in element part-a states that
the child elements xw:ignore, line-1 and line-2 corre-
spond to parts that end with an end-of-line character, i.e.,
lines. Thus, xw:ignore corresponds to “ Words of comment”,

line-1 corresponds to “alla2|a3”and line-2 corresponds
to “ad4”. Similarly, the three a elements correspond to “a1”,
“a27) and “a37).

<part-a xw:starter="\"Part A"
xw:childterminator="\n">

<xw:ignore/> <!-- rest of "Part A" line —-—>
<line-1 xw:childseparator="|">
<a/> <a/> <a/>
</line-1>
<line-2/>
</part-a>

Figure 4: XW wrapper for the first part of the sam-
ple data

The main focus in the design of XW has been to convert
data, as opposed to prose, into data-oriented XML, i.e. XML
with element content only. Pure element content follows nat-
urally from the way text content in an input part is divided
among the child elements of the corresponding element: only
empty wrapper elements are left with text to output. Mixed
content, that is, text content between elements, can be pro-
duced, if desired (see xw:collapse below).

<?7xml version=’1.0’ encoding=’I1S0-8859-1’7>
<part-a>
<line-1>
<a>al <a>a2 <a>a3
</line-1>
<line-2>a4</line-2>
</part-a>
<part-b>
<line>
b1 <bb>b2</bb>
</line>
<line>
b3 <bb>b4</bb>
</line>
</part-b>
<part-c>
<c>c1</c> <cc>c2</cc>
<c>c3</c> <cc>cl</cc>
</part-c>

Figure 5: Result XML document converted from the
sample data

Repetition of a part is described in the corresponding ele-

ment through the attributes xw:minoccurs and xw:maxoccurs.

The three a elements in Fig. 4 could have been expressed
simply by <a xw:minoccurs="3" xw:maxoccurs="3"/> Op-
tionality can be specified through xw:minoccurs="0". Both
attributes default to 1 if unspecified. In the sample data, the
second part has one or more lines. An unspecified number
of occurrences, “as many parts as there are in the input”,
is specified through unbounded. Description of this part is
shown in Fig. 6 and the result can be found in Fig. 5.

<part-b xw:starter="\"Part B\n"
xw:childterminator="\n">
<line xw:childseparator="|"
xw:maxoccurs="unbounded">
 <bb/>
</line>
</part-b>

Figure 6: XW wrapper for the second part of the
sample data

The structure of the resulting XML document can be mod-
ified in two ways. Levels of hierarchy can either be removed
or added. Naming an element xw:collapse will produce el-
ements for the sub-parts of the corresponding part instead
of the part itself. If an xw:collapse element is empty, only
the corresponding text content is produced to output. This
could be used to produce mixed content. In the sample data,
the last part is divided into lines, but we only want to create
elements out of their fields separated by ‘|’. Thus, instead of
naming a result element for the lines, we use xw:collapse.
See Fig. 7 for the wrapper and Fig. 5 for the result.

<part-c xw:starter="\"---\n" xw:childterminator="\n">
<xw:collapse xw:childseparator="|["
xw:minoccurs="0"
xw:maxoccurs="unbounded">
<c/> <cc/>
</xw:collapse>
</part-c>

Figure 7: XW wrapper for the last part of the sam-
ple data

As an inverse operation of xw:collapse, a group of ele-
ments can be enclosed in an element even if no correspond-
ing part can be found for it. The group is simply enclosed in
xw:ELEMENT and the name of the enclosing element is speci-
fied through the attribute xw:name. If we wanted to enclose
the elements part-b and part-c in an element body, we
would write the XW wrapper as shown in Fig. 8.

<xw:wrapper xmlns:xw="http://www.cs.uku.fi/XW/2001"
xw:sourcetype="text"
xw:outputencoding="150-8859-1">
<part-a xw:starter="\"Part A">...</part-a>
<xw:ELEMENT xw:name="body">
<part-b xw:starter="\"Part B\n">...</part-b>
<part-c xw:starter="\"---\n">...</part-c>
</xw:ELEMENT>
</xw:wrapper>

Figure 8: XW wrapper skeleton for the sample data

Textual input can also be divided into parts by character

positions, usually in combination with delimiters. These
positions are measured from the end of the last delimiter
found, starting from 1. Positions are specified through the
attribute xw:position as a space-separated pair of start and
end positions. For example, for lines of names, with the
surname between the first and the 20th character and the
given name between the 22nd and the 31st, we could use the
XW wrapper in Fig. 9.

<xw:wrapper xmlns:xw="http://www.cs.uku.fi/Xw/2001"
xw:sourcetype="text"
Xw:outputencoding="IS0-8859-1">
<names xw:childterminator="\n">
<name xw:maxoccurs="unbounded">
<surname xw:position="1 20"/>
<given xw:position="22 31"/>
</name>
</names>
</xw:wrapper>

Figure 9: XW wrapper for lines of names

Alternative parts that can be identified through a starting
string can be represented with xw:CHOICE. For a discussion,
see the example on HL7 messages in Section 3.

The elements xw:ELEMENT and xw:CHOICE behave differently
from other elements with regard to parent element’s

xw:childstarter, xw:childseparator and xw:childterminator

attributes. Since these two elements have no corresponding
part in input, the delimiter does not affect them, but their
child elements instead.! For an example, see Section 3.1.

A current limitation of XW is that the order of input parts
cannot be changed. Any two input parts, or rather their
content, must be in the same order in output as they were
in input. Work is under way to enable the reordering of data
without sacrificing the simplicity and efficiency of XW.

3. APPLICATIONSOF XW

We have applied XW to XML wrapping of medical messages
and mass printing material. We first discuss the translation
of medical messages into XML, which provides a rather ex-
tensive example of the features of XW.

3.1 XML wrapping of medical messages
Health Level Seven (HL7) is an organization that develops
widely used standards for interchanging medical informa-
tion between healthcare applications. Earlier versions of
HL7 standards use field-based messages while the newest
versions use an XML encoding [8]. In this example we con-
sider XML wrapping of HL7 version 2.3 messages, which is
needed for upgrading legacy systems to use the newer XML-
based exchange formats [6].

The source of the wrapping consists of a number of mes-
sages divided into lines. Lines are divided into fields by
pipe characters (I). On each line, the first field contains

!To make the distinction clear these elements are written in
capitals.

a three-letter identification of its content. Some lines have
fixed places inside the message while others can occur in
mixed order. Fig. 10 shows fragments of an HL7 message
that represents a response to a clinical laboratory request.

MSH|~~\&|KL-Lab| | CCIMS |RDNTO1 | 2000010713001 |
PIDI||1311244A0112|ExamMod1 |Doe"~John| |19441231]...
OBR| | 76551 |Res_01]||]200001070600001| ... |CHIC
0BX| INM|1535~aB-p02~ | 11| ||| | |F

NTE| | | Comment .
NTE| | |Another comment.
0BX| INM|11026~S -ALAT"||61]1|*|||F

~NOoO O WN -

Figure 10: Fragments of an HL7 message

We only explain some central parts of the message, concen-
trating on the observations reported in a message. The first
line begins with the message-begin identifier MSH. The third
line, with identifier OBR, carries general information about
the observation request. The next four lines (4-7) are iden-
tified by either 0BX or NTE. Each OBX line contains a result
for the test, and the NTE lines provide additional comments
to the previous 0BX line.

1 <xw:wrapper xw:sourcetype=’text’
xmlns:xw="http://wuw.cs.uku.fi/XW/2001°>
2 <response xw:starter=’\"MSH’
XW:maxoccurs=’unbounded’
xw:childseparator=’\n’ >

3 -
4 <xw:CHOICE xw:minoccurs=’0’
Xw:maxoccurs=’unbounded’>
5 <xw:collapse xw:starter=’\"0BX’
xw:childseparator=’|’>
6 <xw:ignore xw:minoccurs=’3’
Xw:maxoccurs=’3 />
7 <observation/>
8 <xw:ignore/>
9 <result/>
10 <xw:ignore xw:minoccurs=’5’
Xw:maxoccurs=’5’ />
11 <responsetype/>
12 </xw:collapse>
13 <xw:ELEMENT xw:name=’comment’>
14 <xw:collapse xw:starter=’\"NTE’
xw:childseparator=’|’
xw:minoccurs=’Q’
XW:maxoccurs=’unbounded’>
15 <xw:ignore xw:minoccurs=’3’
Xw:maxoccurs=’3 />
16 <xw:collapse/>
17 </xw:collapse>
18 </xw:ELEMENT>
19 </xw:CHOICE>
20 </response>

21 </xw:wrapper>

Figure 11: Fragments of a wrapper for HL7 mes-
sages

An XW wrapper specification for transforming such mes-
sages to XML documents is shown in Fig. 11. The root el-

<response>

<observation>1535~aB-p02~</observation>
<result>11</result>
<responsetype>F</responsetype>
<comment>Comment .Another comment.</comment>
<observation>10269°S -ALAT"</observation>
<result>61</result>
<responsetype>F</responsetype>

</response>

Figure 12: The result of wrapping an HL7 message

ement of the output data is named response (beginning on
line 2). The creation of response elements is controlled by
the XW attributes of the element. The part of input used
for creating this element is specified to begin with string
MSH at the beginning of a line. The content of the part is di-
vided into lines to be matched by sub-elements of response
by specifying the end-of-line to be a childseparator. The
value unbounded for attribute maxoccurs specifies that an
arbitrary number of parts beginning with MSH are accepted
and transformed to response elements.

The element xw:CHOICE (beginning on line 4) is used for
describing alternative parts of the input. Its occurrence at-
tributes are used to inform that the selection can be repeated
an unlimited number of times (xw:maxoccurs=’unbounded’)
and that the content described by this element is optional
(xw:minoccurs=’0’). XW attribute starter, which is used
for identifying the matching part, is mandatory for all de-
scendant elements of xw:CHOICE that describe some initial
fragment of the alternative parts of input; in this case these
are the xw:collapse elements on lines 5-12 and 14-17 used
for matching lines beginning with 0BX or NTE.

In this example, the comment text on any adjacent NTE lines
is grouped together in a comment element. This is done by
introducing a new hierachy level around the NTE lines us-
ing xw:ELEMENT (lines 13 and 18). The NTE lines are pro-
cessed on lines 14-17 with xw:collapse, which is replaced
in the result by the results of its child elements. Out of
these the xw:ignore element on line 15 is used for discard-
ing three non-interesting (empty) subfields of a line, and
the xw:collapse on line 16 is used for including the actual
comment text from the fourth field of the line.

The specified wrapper will convert the sample input data
into XML form shown in Fig. 12.

3.2 Automating the control of processing

Describing document conversions and transformations is of-
ten tedious even with powerful languages like XW or XSLT.
The descriptions grow large if there are tens or hundreds of
parts to identify. Fortunately the generation of these de-
scriptions can be automated in some cases. As an example
we are considering mass printing of data files consisting of
invoices. Invoices are divided into lines that start with iden-
tifiers, and lines are divided into fields. There is a control
file for this invoice data file that describes the names and
the meaning of the identifiers and delimiters, as well as the
formatting. A program for processing the data is written

manually based on the control file. Because the control file
already contains all the information needed to identify and
to format the data, it would be practical to automate the
generation of wrapper specifications and stylesheets from
the control file.

In Fig. 13 we can see how processing of the data file can
be fully automated. First we write an XW wrapper (1) for
translating the control file (control.txt) to an XML form.
This allows the control file to be processed with various XML
technologies, for example XSLT. Next we write an XSLT
script (2) which processes the XML version of the control
file (control.xml) and generates an XW wrapper (3) for con-
verting the data file (invoices.txt) to XML (invoices.xml).
Third we write a formatting script (4) which produces a for-
matted version (invoices.fo) of the data file by retrieving for
each of its elements the appropiate formatting instructions
from the control file.

Once the first XW wrapper (1) and the two XSLT scripts
(2 and 4) have been written, the conversion and the format-
ting are automated. After that it is possible to deal with a

number of similar materials simply by replacing the control
file.

As of this writing we have tested the initial part (scripts 1
and 2) of the process outlined above, succesfully generating
an XW wrapper (3) that converts given invoice data to well-
formed XML.

4. IMPLEMENTATION PRINCIPLES

In this section we discuss the implementation principles of
XW. We have developed a prototype implementation of XW
using Java. The implementation uses Apache Xerces [2] as
an XML parser to read in the wrapper description. The
wrapper description is represented internally as a tree struc-
ture called a wrapper tree. The wrapper tree is used as an
automaton that guides the parsing and translation of the
input data.

The wrapper tree consists of labeled nodes, each correspond-
ing to an element of the wrapper description. The nodes are
used for matching parts of input and for generating corre-
sponding result elements. A node may match a number
of parts of the input based on the occurrence indicator at-
tributes minoccurs and maxoccurs given in the wrapper de-
scription.?

Parsing of delimiter-separated textual data is based on strings
that XW looks for in the input data. We attach four sets
of strings to each node of the wrapper tree, denoted by S
(Starters), B (Begin strings), 7' (Terminators), and F' (Fol-
low strings). The design of these sets was inspired by the
First and Follow sets used in LL(k) parsing [17]. The S set
contains starter strings that are specified for an element in
the wrapper description, and the T set contains the specified

2Generation of static text content is also supported by in-
cluding fragments of literal text in a wrapper description.
They are implemented by tezt nodes, which simply generate
the corresponding text to the result whenever encountered
during the interpretation of the wrapper tree. We ignore
further treatment of text nodes in the following discussion
of wrapper execution.

XW
processor

3.
XSLT
processor

control.xslt

XW
processor

XSLT
processor

> invoices.fo

4

Figure 13: Automated conversion and formatting of invoices

terminator strings. Sets S and T are used for finding and
skipping delimiters of input parts.> The B set for a node
consists of strings that can begin a part of input matched by
the node. The B sets are used for choosing between alterna-
tive branches of the wrapper tree based on initial fragments
of input. Finally, the F' set for a node consists of those
strings that can begin a part of input that follows a part
matched by the node.

The delimiter sets are computed with rather straightforward
traversals of the wrapper tree. We omit a formal description
of the preprocessing of the delimiter sets. Instead, we give
an example which hopefully conveys the main ideas.

Consider the wrapping of simplified troff-like documents,
which consist of an optional header followed by a number
of paragraphs. The start of the header and the paragraphs
are denoted by single-line commands .H and .P, respectively.
Paragraphs consist of a number of lines. Translation of such
an input to XML could be specified by an XW wrapper
shown in Fig. 14. The wrapper tree created from this wrap-
per description is shown in Fig. 15. Occurrence indicators
(minoccurs, maxoccurs) are shown in parentheses after the
name of the node. The default value of both is 1; the value
that denotes ”unbounded” is shown as ’*’.

The S sets contain the starters given explicitly in the wrap-
per specification (for header and para). If the S set is non-
empty, then the B set contains exactly the same strings.

Otherwise it contains the strings that can begin a part matched

by the node: for wrapper and docu this means the starter
"\~.H\n" of header, and, because header is optional, also
the starter "\~.P\n" of para.

If no starters are specified for a node, its input part is as-
sumed to start immediately after the previously matched

3Sub-part delimiters specified using childstarter and
childseparator are included in the S sets of the nodes that
correspond to the sub-parts of the element, and similarly the
childterminators are included in the T sets of these nodes.

<xw:wrapper xmlns:xw="http://www.cs.uku.fi/XwW/2001"
xw:sourcetype="text" >
<docu><header xw:starter="\".H\n"
xw:minoccurs="0" />
<para xw:starter="\".P\n"
xw:minoccurs="0"
xw:maxoccurs="unbounded">
<line xw:terminator="\n"
xw:minoccurs="Q"
XW:maxoccurs="unbounded" />
</para>
</docu>
</xw:wrapper>

Figure 14: XW wrapper for simplified troff

part of input (if any). This is achieved by including in the
B set of such a node (e.g. 1line) only an empty string,
which technically appears at any position of input (e.g., at
the very beginning of a para and immediately after the end
of a preceding line).

Element line has the only explicitly specified terminator
"\n", which is stored in the T set of the corresponding node.

The contents of the F' (Follow) sets are motivated as fol-
lows. By default, the entire input stream is processed by
the wrapper. For this reason an end-of-file indicator (EOF)
is included in the F' set of the root of the wrapper tree.
Follow-delimiters are propagated to the F' sets of any de-
scendant nodes that may match some terminal fragment of
the input: in this case from wrapper to docu, para, line,
and header. Repeating para parts follow each other in se-
quence, which is why the B set of node para is included in
its F' set. A similar reasoning applies to node line. Be-
cause node line also matches terminal parts of paragraphs,
its F' set contains also the follow-strings of its parent node
para. Since a header can be followed by para parts, its F
set contains in addition the begin strings of node para.

A node is called nullable if it matches an empty part of input
(without any delimiters or content). A node is nullable if its
S and T sets are both empty and if all of its children are
optional or nullable. In the example wrapper tree nodes
wrapper and docu are nullable.

wrapper(1,1)
S={} T={}

B={"\".H\n", "*.P\n"}

F={ EOF}

docu(1,1)
S={} T}

B={"\".H\n", "\".P\n"}

F={EOF}

header(0,1)

S={"V\H\n"} T={}
B={"\\H\n"}

F={"\".P\n", EOF}

para(0, *)

S={"\\.P\n"} T={}
B={"*.P\n"}

F={"*.P\n", EOF}

line(0, *)

S={() T={"\n'}
07

E-(" Pt EOF)

Figure 15: An XW wrapper tree

Execution of a wrapper is implemented as a traversal of the
wrapper tree, which guides the parsing of the input. Fig. 16
shows a simplified version of the XW execution algorithm
represented as a recursive procedure processNode. An XW
transformation is initiated by passing the root of the wrap-
per tree as an argument to processNode.

Parsing of the input is based on two scanning functions.
Function scanUntil(in D: set of strings; out s: string)
advances the input cursor until the first occurrence of any
delimiter string in D is found. When such an occurrence is
found, the function assigns it to s and returns the scanned
part of the input, excluding the terminating string s. In case
of multiple strings occurring at the same input position, the
longest match is selected and assigned to s. This is done
to choose the most specific one out of conflicting delimiters.
For example, in the execution of the wrapper tree in Fig. 15
this rule would lead to selecting the starter ”.P” of a new
paragraph instead of an empty-string starter of a new line.
Function scanOver(in D: set of strings) similarly advances
the input cursor past the first occurrence of any string in D
and returns the part of input that precedes the occurrence.
Function scanQver is used in the XW execution algorithm
for skipping starters (line 10) and terminators (line 18). If
none of the given delimiters is found, the function raises an

procedure processNode(Node n):
1. for r:=1 to n.maxoccurs do
2. if r < n.minoccurs and n is not nullable then

3. void:= scanUntil(n.B, s);

4. else void:= scanUntil(n.B U n.F s);

5. if r > n.minoccurs and s ¢ n.B then return;
6. if n is xw:CHOICE then

7. Let c be the first child of n s.t. s € ¢.B

8. processNode(c);

9. else

10. if n.S # 0 then void:= scanOver(n.S);

11. if n is xw:ELEMENT or a result element then
12. startElement(...);

13. if n has children then

14. ¢ := n.firstChild();

15. while ¢ # null do

16. processNode(c);

17. ¢ := c.nextSibling();

18. if n.T # 0 then content:= scanOver(n.T');
19. else content:= scanUntil(n.F, s);

20. if n is a leaf, other than xw:ignore then
21. characters(content);

22. if n is xw:ELEMENT or a result element then
23. endElement(. ..);

24. endfor

Figure 16: XW wrapper tree execution algorithm

€error.

The execution algorithm may iterate at each node based
on its occurrence indicators. Required occurrences of non-
nullable nodes are processed by first scanning the input for
a string that begins the input part of the node (lines 2-3).
Optional occurrences of a node are processed until a follow-
delimiter is found instead of a begin-delimiter for the node
(lines 4-5). The result of the transformation is formed by
generating SAX events for the start, for the text content,
and for the end of an element (lines 12, 21 and 23).

It is relatively easy to see that the wrapper tree execution al-
gorithm runs in linear time with respect to the length of the
input; each character needs to be inspected only once (and
possibly reported as the content of the result document).4

Wrapping of positionally defined textual fields or binary
data is different but also simpler than parsing of delimiter-
separated textual input, which we discussed above. For rea-
sons of space we omit the discussion of translation principles
of these cases.

The execution of a wrapper, as discussed above, scans some
strings in the input and writes some other strings to the
result on the basis of the current node in the wrapper tree
traversal. So, basically, XW wrapping corresponds to the ex-
ecution of a finite state transducer. (See, e.g., [15, Chap. 2].)
That is, XW is capable of performing translations from a

4The scanning functions can be made to inspect each input
character only once by implementing their argument sets as
Aho-Corasick automata [1].

regular language to another regular language.® We could
also extend XW to enable the recognition and translation
of recursive or self-similar nesting input structures. Rep-
resentations of nested objects or lists are examples of such
structures. This extension would make XW wrapping to
correspond to translation of LL(1) languages. We haven’t
considered this extension in depth; it would complicate the
implementation, while it is not clear to us whether it is really
needed for XML wrapping of real-life data representations.

5. RELATED WORK

Extraction of data from web pages has been studied exten-
sively. The irregularity of web pages often requires rather
complex methods for wrapping data. These include, for ex-
ample, heuristics for identifying relevant tokens, sections
and objects on HTML pages [3, 11], and machine learn-
ing of wrappers [10]. An XML-based Data Extraction Lan-
guage (DEL) has also been proposed [12]. DEL uses an
XML syntax to express a procedural sequence of commands
for accessing a text source with regular expressions and for
building a DOM representation of the extracted data. As
opposed to these developments we are dealing with an eas-
ier problem. Data formats that we consider are quite reg-
ular when compared to typical HTML pages, which makes
a declarative and simple language like XW sufficient to de-
scribe wrappers.

Extracting and loading relational data as XML documents
has been considered by Bourret, Bornhovd and Buchman [4].
They use object-relational mapping techniques to develop
a utility to transfer data between relational databases and
XML documents. Their work is somewhat related to ours.
XW is not tied to any specific application area or input
data format, but it can be used, for example, for translat-
ing comma-separated database reports to XML. (Transla-
tion of XML documents to a format used for loading data
to a database is normally easy with standard XML process-
ing techniques.)

The work of Nakhimovsky [13] is rather close to ours in the
sense that he also applies a declarative formalism for spec-
ifying the translation of data to XML. He applies formal
grammars and parser generators, while we apply declara-
tive XW wrappers. On the other hand, generating XML
with a parser generator requires hand-coding of the relevant
semantic actions, which requires considerable skill. In con-
trast, the XW implementation automates the generation of
the resulting XML document described by the wrapper.

6. CONCLUSIONS

We have described a declarative XML-based language called
XW for describing translation of non-XML data sources to
XML documents, or ”XML wrapping”. XW is suitable for
wrapping any serialized data consisting of recognizable parts
like lines or records and fields. The described wrappers pro-
cess the input data sequentially, recognizing parts and ar-
ranging them as an XML document described by the wrap-
per. Since the language is not designed for any specific ap-
plication domain it should be easily applicable for wrapping
a wide variety of legacy data formats.

5The result of the translation is just chosen to be a string
of SAX events that encodes a hierarchical XML structure.

We have developed a working prototype of XW, and are
using it to automate the conversion of medical messages and
mass printing data to XML documents. We also discussed
possibilities of applying the wrapping technology to control
files of mass printing data in order to fully automate their
processing.

We also discussed the algorithmic principles of executing
XW wrapper descriptions. We are considering various ex-
tensions to the basic features of XW discussed in this paper.
Possible extensions include XSLT-like constructs for gener-
ating XML attributes using values drawn from the input
data, and methods to change the order of parts of input.
Such extensions should not weaken the declarative simplic-
ity and efficient implementability of XW. On the other hand,
they might eliminate the need of further document trans-
formations in some typical wrapping applications, and thus
both simplify the design and speed up the execution of XML
wrappers.

7. ACKNOWLEDGMENTS

This work is supported by the Finnish National Technology
Agency with funds provided by the Europeand Union, and
the following organizations: Deio Corporation, Enfo Group
Plc, JSOP Interactive, Kuopio University Hospital, Medi-
group Ltd, SysOpen Plc, and TietoEnator Corporation.

We dedicate this paper to the memory of Prof. Eila Kuikka,
the original leader of our project. We also acknowledge the
support of Prof. Martti Penttonen and the collaboration of
M.Sc. Sami Komulainen and Ph.Lic. Paula Leinonen.

8. REFERENCES
[1] A. V. Aho and M. J. Corasick. Efficient string
matching: an aid to bibliographic search. Comm. of
the ACM, 18(6):333-340, June 1975.

[2] Apache Software Foundation. Xerces2 Java Parser,
2002.
http://xml.apache.org/xerces2-j/index.html.

[3] N. Ashish and C. A. Knoblock. Wrapper generation
for semi-structured Internet sources. SIGMOD Record,
26(4):8-15, 1997.

[4] R. Bourret, C. Bornhévd, and A. Buchmann. A
generic load/extract utility for data transfer between
XML documents and relational databases. In P. You,
editor, Proc. of the 2nd Intl. Workshop on Advanced
Issues of E-Commerce and Web-Based Information
Systems, pages 135-143. IEEE Comp. Soc., 2000.

[5] J. Clark, editor. XSL Transformations (XSLT)
Version 1.0. W3C Recommendation, Nov. 1999.

[6] M. Ek, H. Hakkarainen, P. Kilpeldinen, E. Kuikka,
and T. Penttinen. Describing XML wrappers for
information integration. In Proc. of XML Finland
2001, pages 38-51, Tampere, Finland, Nov. 2001.

[7] Electronic business XML (ebXML) home page.
http://www.ebxml.org, 2002.

[8] Health Level Seven. HL7 Standards, 2002.
http://www.hl7.org/Library/standards.cfm.

[9] A. L. Hors et al., editors. Document Object Model
(DOM) Level 2 Core Specification. W3C
Recommendation, Nov. 2000.

[10] N. Kushmerick. Wrapper induction: Efficiency and
expressiveness. Artificial Intelligence, 118(1-2):15-68,
2000.

[11] A. Laender, B. Ribeiro-Neto, and A. da Silva. DEByE
— data extraction by example. Data & Knowledge
Engineering, 40:121-154, 2002.

[12] E. Lampinen and H. Saarikoski, editors. DEL - Data
Eztraction Language. W3C Note, Oct. 2001.

[13] A. Nakhimovsky. Using parser-generator to convert
legacy data formats to XML. In XML Europe 2001,
Berlin, Germany, May 2001.

[14] XML support in Oracledi.
http://otn.oracle.com/tech/xml/techinfo.html,
Dec. 2000. An Oracle Technical Whitepaper.

[15] G. Rozenberg and A. Salomaa, editors. Handbook of
Formal Languages, volume 1 Word, language,
grammar. Springer-Verlag, 1997.

[16] SAX 2.0: The Simple API for XML.
http://www.megginson.com/SAX/sax.html, May
2000.

[17] S. Sippu and E. Soisalon-Soininen. Parsing Theory,
volume I: Languages and Parsing. Springer-Verlag,
1988.

[18] H. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn, editors. XML Schema Part 1:
Structures. W3C Recommendation, May 2001.

[19] D. Waldt. Getting data into XML: Data collection
and conversion techniques. In XML Furope 2002,
Barcelona, May 2002. Abstract.

