
Clean-CORBA Interface for Parallel Functional
Programming on Clusters ?

Zoltán Horváth, Zoltán Varga, Viktória Zsók

Department of General Computer Science
University of Eötvös Loránd, Budapest

e-mail: hz@inf.elte.hu, Zoltan.2.Varga@nokia.com, zsv@inf.elte.hu

Abstract. The presented Clean-CORBA interface opens the way for de-
veloping parallel and distributed applications consisting of components
written in a functional programming language, Clean. The interface de-
fines a language mapping from the IDL language used by CORBA to
Clean. It contains an IDL-to-Clean compiler which generates the nec-
essary stub and skeleton routines from the IDL files. The interface is
a general tool for connecting functional Clean programs and programs
written in any language using a CORBA interface via the network.

We focus on a specific application of this tool in this paper, we build
a software architecture for programming clusters using the functional
programming language Clean. We design and implement an abstract
communication layer based on CORBA server objects. Using this ar-
chitecture we can build up applications consisting components written
in several programming languages, some components written in pure
functional style in Clean, while other components written in an object-
oriented language like Java or C#.

Based on this software architecture the field of skeletal programming
is studied, which suits very well with the functional programming. A
skeleton for pipeline computing is chosen as an example to present the
main features of this approach.

1 Introduction

One of the easiest way to provide powerful infrastructure for parallel and dis-
tributed computing is to build a cluster and interconnect clusters via the internet
into a Grid.

Less work was done yet for adapting functional programming languages to the
possibilities offered by clusters [5, 13]. Our intention is to test and to verify how a
functional programming language fits into the parallel programming framework
offered by clusters [8, 5].

Functional programming is very suitable for expressing parallelism. Composi-
tion of functions is an associative operation, so evaluation of functional programs

? Supported by the Hungarian National Science Research Grant (OTKA), Grant No.
T037742 and by IKTA 89/2002 (JiniGrid)

128 Zoltán Horváth, Zoltán Varga, Viktória Zsók

can be done in parallel or distributed way. So functional programs are inherently
parallel but the evaluation in parallel of an expression is not always worthwhile.

There are several elements of functional programming languages which sup-
port to control parallel and distributed evaluation [9, 11, 7], and communication.
These solutions are different in efficiency and in power of expressiveness and re-
quire different hardware and software infrastructure. Evaluation strategies [12,
6] may be applied in parallel computations separating dynamic evaluation issues
from static requirements. The Haskell language has several dialects with parallel
features: GpH [8], pH [10], Eden [4], Distributed Haskell with Ports [7]. A skele-
ton is a parameterised algorithmic scheme. Skeletons in functional languages are
higher order functions parameterised by functions, types and evaluation strate-
gies. Evaluation strategies are appropriate tools in order to control the evaluation
degree, the dynamic behaviour and the parallelism. A higher degree of abstrac-
tion level expressing parallelism can be achieved by parameterising skeletons
with evaluation strategies. There were several studies regarding skeletons [3, 12]
from the apparently very simple but very useful skeleton parmap, to the more
complex skeletons like the parallel elementwise processing [6].

Functional programs can also be developed and tested on cluster systems. The
first study was the comparison of the GpH and the Eden languages regarding
their performances [8]. The GpH and Eden comparison was done on a Beowulf
cluster, however the Clean functional language and applications consisting of
both functional and imperative components up to now has not been tested for
parallelism on a cluster system.

Language elements of Concurrent Clean are described in [9, 11]. In the present
implementation a Clean-CORBA interface [13] is used as an infrastructure for
parallel communication. The interface implements a language mapping from
Clean to IDL. The present work examines the way of expressing parallel compu-
tations using the Clean lazy functional programming language on a cluster. Our
Clean-CORBA interface uses the MICO CORBA implementation and allows to
write CORBA clients and servers in the lazy functional programming language
Clean.

We have chosen an implementation of the skeleton of pipeline computation
as an example in this paper to present the main features of our approach.

Section 2 describes the Clean-CORBA interface. The mapping from the
CORBA IDL to the Clean functional language is described according to the
language elements.

The third section presents an implementation of asynchronous communi-
cation channel, which can be used for connecting Clean programs and other
programs in a a cluster environment.

The pipeline skeleton is very suitable for the computation of functions which
can be built by the composition of small components, for the detailed specifica-
tion of the problem see the fourth section.

The last section (section 5) concludes.

Clean-CORBA Interface for Parallel Functional Programming on Clusters 129

2 Clean-CORBA interface

2.1 Overview of the interface

To access CORBA from a programming language a language mapping for the
particular language is needed. This mapping should contain the following ele-
ments: an IDL module mapping to the specific language, the simple and com-
posed types of IDL association with the types of the language, the projections
of the definitions and operations of the IDL interface, the implementation of
services offered by the CORBA server and of the pseudo-objects of the CORBA
into the language.

The identifiers of the IDL are the same in Clean, the names of the modules
are included in the identifiers. The different integer types are associated with
the Int type of Clean, in the same way the real types are projected into the
Real type of the Clean language. The most interesting is the TypeCode, which
gives us information about the IDL types during runtime. The most complex
implementation is for the type Any and for the union. The enumeration type
corresponds to the algebraic type in Clean. The structures are connected with
records, constants are functions without parameters, the sequences and arrays
are lists. The operations are associated with functions, CORBA objects with
records. For communication through TCP ports and for IP identification the
services of MICO Binder are used.

2.2 Mapping of identifiers

A CORBA identifier is mapped to the Clean identifier with the same name.
Identifiers within modules are mapped to the fully qualified name with the ::
symbols replaced with _ symbols, thus:

foo -> foo
CORBA :: Object -> CORBA_Object

2.3 Mapping of types

Basic types. The mapping for basic types is as follows:

short -> Int long -> Int ushort -> Int
ulong -> Int float -> Real double -> Real
char -> Char octet -> Int boolean -> Boolean
string -> String

Other types (long long, fixed etc.) are not supported. The limited range of
the Int type may present problems if large integer values are exchanged between
clients and servers.

130 Zoltán Horváth, Zoltán Varga, Viktória Zsók

Enumerated types. IDL Enums are mapped to simple algebraic types. For
example
enum Color { Red, Green, Blue }; maps to

:: Color = Red | Green | Blue

Structures. IDL Structures are mapped to Clean records. The field names
remain the same. For example:

struct Foo {
short m1;
long m2;};

maps to

:: Foo = {
m1 :: Int,
m2 :: Int

}

If the structure contains an ’anonymous’ field (like sequence <long> m3),
then the IDL compiler will create a new Clean type (in this case Foo__m3), and
this will be the type of the corresponding field in the Clean record. Recursive
structures and unions are supported too.

Unions. IDL unions map to Clean algebraic data types, with one data con-
structor for each legal discriminator value. For example:

union Glorp switch (short) {
case 0: short m1;
case 1: char m2;
default: string m3; };

maps to

:: Glorp = Glorp_0 Int
| Glorp_1 Char
| Glorp__default Int String

This mapping can’t handle discriminators of type ’char’. Thus type ’char’
is not currently supported as a discriminator type. An alternative mapping would
be

:: Glorp=Glorp_m1 Int | Glorp_m2 Chat | Glorp__default
Int String.

Sequences and Arrays. IDL sequences map to Clean lists. For example:
typedef sequence<long> LongList; maps to LongList :== [Int].

Clean-CORBA Interface for Parallel Functional Programming on Clusters 131

2.4 Mapping of constants

IDL constants are mapped to Clean constants. For example:

const long THE_ANSWER = 42;
const double PI = 3.14159;

maps to

THE_ANSWER :: Int
THE_ANSWER = 42
PI :: Real
PI = 3.14159

2.5 Interfaces

IDL Interfaces map to abstract Clean types, which contain the object reference in
their hidden parts. Each interface type has a corresponding <T>__nil function
which returns a NIL object reference of the given type. Conversions between
interface types are supported through <T>__narrow and <T>__widen functions
generated by the IDL compiler.

2.6 Operations

Each IDL operation maps to a Clean function which performs the CORBA call.
As an example we present here the Account interface:

interface Account {
void deposit(in long amount);
void withdraw(in long amount);
long balance();

};

the following functions are generated:

Account_deposit :: Account CORBA_Long *World
-> ((ResultOrException CORBA_Void CORBAException), *World)
Account_withdraw :: Account CORBA_Long *World
-> ((ResultOrException CORBA_Void CORBAException), *World)
Account_balance :: Account *World
-> ((ResultOrException CORBA_Long CORBAException), *World)

The first argument of each function is the receiver CORBA object. Since
these functions have side effects, they both take and return a unique World
argument. The ResultOrException type is similar to the Either type:

:: Either a b = First a | Second b

132 Zoltán Horváth, Zoltán Varga, Viktória Zsók

If the IDL operation has out or inout arguments, the functions return them,
too:

Account_balance2 :: Account *World
->(((ResultOrException (CORBA_Void,CORBA_Long)

CORBAException), *World))

For each IDL attribute, the IDL compiler will generate both a getter and a
setter function. The corresponding Clean code is:

Account__get_balance3 :: Account *World
-> ((ResultOrException CORBA_Long CORBAException), *World)
Account__set_balance3 :: Account CORBA_Long *World
-> ((ResultOrException CORBA_Void CORBAException), *World)

2.7 The TypeCode and Any types

These types are mapped to algebraic types. Their definition is in the CORBA.dcl
file.

Dynamic Invocation Interface. The DII is supported through the following
function:

CORBA_invoke :: CORBA_Object String [CORBAArg] TypeCode
[TypeCode]
*World -> (Any, CORBAException, [CORBAArg], *World)

The meaning of the arguments:
- The first argument is the target CORBA object.
- The second argument is the name of the operation.
- The third argument is a list of the arguments.
- The fourth argument is the return type of the operation.
- The fifth argument contains the typecodes of IDL exceptions, which can be
raised by the operation.
- The sixth argument is the old World.

The result is a tuple with the following parts:
- the return value of the operation,
- the exception raised by the operation, if any (the returned value is NoException,
if there is no exception),
- the value of the out and inout arguments,
- the new World.

2.8 Server side mapping

The server side mapping uses a simplified version of the Object IO framework
[1]. The IDL compiler generates servant types for each IDL interface. A servant
is a record type with one field for each IDL operation in the interface. The
programmer must create an instance of this servant type, and register it with
the system before it can answer CORBA requests.

Clean-CORBA Interface for Parallel Functional Programming on Clusters 133

2.9 The implementation

As said earlier, this package consists of a CORBA-CLEAN interface library, and
an IDL-TO-CLEAN compiler. The interface library consists of three layers:

1. The lowest layer is a collection of C functions giving access to CORBA
functionality.

2. The middle layer simply consists of Clean wrapper functions around the C
functions in the previous layer.

3. The third layer contains the high level interface described in the previous
sections.

The implementation uses CORBA DII and DSI for communication, similarly
to the MICO-TCL interface software TclMico.

The IDL compiler works by first uploading the contents of the IDL file into
a CORBA Interface Repository daemon, then reading this data using normal
CORBA calls into an intermediate representation, and finally generating Clean
code.

3 The implementation of a channel object

Many problems can be viewed as networks of message-communicating processes,
therefore it is very useful to implement them efficiently.

To interconnect processes or distributed programs we need to implement
channels with communication primitives. We have implemented operations for
asynchronous message passing using CORBA server objects. We store the mes-
sages in the local state of the server.

The program has to import the channel interface, which defines the channel
operations. The program also has to import the Clean standard environment and
the Corba package. These are the basic modules for our Clean-CORBA interface.

The initialisation of the CORBA system uses the CORBA_ORB_init function,
which returns a CORBA_ORB object. CORBA_Server_run initialises the CORBA
server.

In our model the channel initialises the ORB and starts a CORBA event
handler. By the ServerInit we create a servant, which will be registered by the
ORB. ServerInit transforms the general object reference into the desired type.
The event handler system will assure that the requests of the clients are passed
to the servant objects.

Start w
(orb,_,w) = CORBA_ORB_init args w
= CORBA_Server_run orb Void ServerInit w

where
ServerInit ps w
(obj, ps, w) = Channel__servant_open ps servant w
w

134 Zoltán Horváth, Zoltán Varga, Viktória Zsók

= WriteIORToFile (CORBA_Server_get_orb ps) obj
"channel.ior" w

= (ps, w)
servant = { Channel__servant |

ls = h,
impl_send = my_send,
impl_receive = my_receive,
impl_empty = my_empty,
impl_full = my_full
}

my_send (ls, ps) what w
= ((ls ++ [what], ps), Result Void , w)

my_receive ([x:xs], ps) w
= ((xs, ps), Result x, w)

my_empty (ls, ps) w
= ((ls, ps), Result (empty ls), w)

my_full (ls, ps) w
= ((ls, ps), Result (full ls), w)

Channel__servant_open registers the servant at the IO system. The servant
defines the operations of the channel. These operations are state transition func-
tions, which modifies the local state of the channel (ls). The h is the sequence
containing the elements of the channel. The function my_send is the implementa-
tion of the channel operation send and adds to the sequence an element sent by
the client. The my_receive function implements the channel function receive
and sends to the client one data from the sequence. The function my_empty is
true if the sequence is empty and my_full is true if the sequence is full.

4 The pipeline skeleton

The pipeline skeleton is a special type of process network usually applied for
calculating a composite function. The processes are organised linearly. A pro-
cesses running on a pipeline element calculates a component function and sends
intermediate results to its immediate successor. The data input is processed at
the beginning of the pipeline.

We consider a simple description of the pipeline problem [2].
Let D =� d0, d1, . . . , dM � be a sequence of data, where M � N , and let

F =� f0, f1, . . . , fN � be a sequence of functions.
Let f i(x) denote fi(fi−1(. . . f0(x) . . .)); we assume that f i(x) is defined for

all i, 0 ≤ i ≤ N and all x in D.
We compute the sequence fN (D), where fN (D) =� fN (d0), . . . , fN (dM) �.
The pipeline problem is implemented in the following form: the Clean pro-

grams are Corba-clients and calculate the components of F .
The computation can be parameterised by the component function fi and

by the type of its argument (skeleton). The send and receive functions are im-

Clean-CORBA Interface for Parallel Functional Programming on Clusters 135

plemented by the abstract channel CORBA server, the object presented in the
previous section.

For sending data on the channel we have the following function:

sendf x obj w
(Result l, w) = Channel_full obj w
| l = sendf x obj w
= Channel_send obj (f x) w

The function checks if the sequence of data is full. In case is full will try
again, in case it is not full will send the data to the server object. For receiving
data we have the following function:

receivef obj w
(Result l, w) = Channel_empty obj w
| l = receivef obj w
= Channel_receive obj w

The function verifies if the sequence is empty. If it is empty then will try
again, otherwise receives a data from the server.

As an example we compute sin(x) ≈
n∑

i=0

(−1)i ∗ x2i+1

(2i+1)! . For this we use the

following data structure: d = (xx : R, s : R, e : {1,−1}, h : R). The function
sin(x) ≈ sinn ◦ . . . ◦ sin0(x), where

sin0(x) = (x2, x,−1, x)

sini(d) = (d.xx, d.s + d.e ∗ d.h ∗ d.xx
(2i)∗(2i+1) , d.e ∗ (−1), d.h ∗ d.xx

(2i)∗(2i+1))

sinn(d) = d.s + d.e ∗ d.h ∗ d.xx
(2n)∗(2n+1)

The following lemma can be proved:

f i(x) = fi ◦ . . . ◦ f0(x) = (x2,
i∑

j=0

(−1)j ∗ x2j+1

(2j+1)! , (−1)i+1, x2i+1

(2i+1)!)

for all i = 0, . . . , n− 1.
According to the lemma the pipeline skeleton will produce a correct result.

5 Conclusions

The implemented Clean-CORBA interface was presented by a pipeline problem.
The interface allows us to use the Clean lazy functional language on a cluster.
The server-client communication interface is assured by the CORBA stubs in-
stantiation and it is converted to Clean code. The operation of the interface can
be described in an idl file using the CORBA IDL language then the idl2clean
transforms it into Clean program. The novelty of this CORBA-Clean interface
consists in the connection of a functional language with CORBA. This interface
opens us the possibility of implementing a wide range of parallel programming
problems in a functional language in a cluster environment.

136 Zoltán Horváth, Zoltán Varga, Viktória Zsók

References

1. Achten, P., Wierich, M.: A Tutorial to the Clean Object I/O Library, University of
Nijmegen, 2000, http://www.cs.kun.nl/˜clean.

2. Chandy, K. M., Misra, J.: Parallel Program Design, Addison-Wesley, 1989.
3. Cole, M.: Algorithmic Skeletons, In: Hammond, K., Michaelson, G. (eds.): Research

Directions in Parallel Functional Programming, pp. 289-303, Springer-Verlag, 1999.
4. Galán, L.A., Pareja, C., Peña, R.: Functional Skeletons Generate Process Topologies

in Eden, In: Int. Symp. on Programming Languages, Implementations Logics and
Programs PLILP’96, Aachen, Germany, LNCS, Vol. 1140, pp. 289-303, Springer-
Verlag, 1996.

5. Horváth Z., Hernyák Z., Kozsik T., Tejfel M., Ulbert A.: A Data Intensive Appli-
cation on a Cluster - Parallel Elementwise Processing, In: Kacsuk P., Kranzlmüller
D., Neméth Zs., Volkert J. (eds.): Distributed and Parallel System - Cluster and
Grid Computing, Proc. of 4th Austrian-Hungarian Workshop on Distributed and
Parallel Systems, Kluwer Academic Publishers, The Kluwer International Series in
Engineering and Computer Science, Vol. 706, pp. 46-53, Linz, Austria, September
29-October 2, 2002.

6. Horváth Z., Zsók V., Serrarens, P., Plasmeijer, R.: Parallel Elementwise Process-
able Functions in Concurrent Clean, to appear in Computers & Mathematics with
Applications, Elsevier.

7. Huch, F., Norbisrath, U.: Distributed Programming in Haskell with Ports,
Implementation of Functional Programming Languages, 12th Interna-
tional Workshop, IFL2000, Aachen, Germany, September 4-7, 2000, LNCS,
Vol. 2011, pp. 107-121, Springer 2001, http://www-i2.informatik.rwth-
aachen.de/hutch/distributedHaskell.

8. Loidl, H.W., Klusik, U., Hammond, K., Loogen, R., Trinder, P.W.: GpH and Eden:
Comparing Two Parallel Functional Languages on a Beowulf Cluster, In: Gilmore,
S. (ed.): Trends in Functional Programming, Vol. 2, pp. 39-52, Intellect, 2001.

9. Kesseler, M.H.G.: The Implementation of Functional Languages on Parallel Ma-
chines with Distributed Memory, PhD Thesis, Catholic University of Nijmegen, 1996.

10. Rishiyur S. Nikhil, Arvind: Implicit Parallel Programming in pH, Morgan Kauf-
mann, 2001.

11. Serrarens, P.R.: Communication Issues in Distributed Functional Computing, PhD
Thesis, Catholic University of Nijmegen, 2001.

12. Trinder, P.W., Hammond, K., Loidl, H.W., Peyton Jones, S.J.: Algorithm + Strat-
egy = Parallelism, Journal of Functional Programming, Vol. 8, No. 1, pp. 23-60,
1998.

13. Varga Z.: Clean-CORBA Interface, Master thesis, University of Eötvös Loránd,
Budapest, 2000. (Supervisor: Horváth Z.)

