
Regular Expressions with Numerical Occurrence
Indicators—preliminary results?

Pekka Kilpeläinen and Rauno Tuhkanen

University of Kuopio
Department of Computer Science

P.O. Box 1627, FIN-70211 Kuopio, Finland
{Pekka.Kilpelainen, Rauno.Tuhkanen}@cs.uku.fi

Abstract. Regular expressions with numerical occurrence indicators
(#REs) are used in established text manipulation tools like Perl and
Unix egrep, and in the recent W3C XML Schema Definition Language.
Numerical occurrence indicators do not increase the expressive power of
regular expressions, but they do increase the succinctness of expressions
by an exponential factor. Therefore methods based on straightforward
translation of #REs into corresponding standard regular expressions are
computationally infeasible in the general case. We report some prelimi-
nary results about computational problems related to efficient matching
and comparison of #REs. Matching, or membership testing of languages
described by #REs, is shown to be tractable. Simple comparison prob-
lems (inclusion and overlap) of #REs are shown to be NP-hard. We also
consider simple #REs consisting of a single symbol and nested numeri-
cal occurrence indicators only, and derive a simple numerical test for the
membership of a word in the language described by a simple #RE.

1 Introduction and Related Work

Regular expressions are used as a standard method to describe and to recog-
nize regular languages, for example, in text searching [5], in the implementa-
tion of programming language compilers [2], and in grammatical document for-
malisms [14].

Various extensions of regular expressions are used in different applications.
We consider regular expressions with numerical occurrence indicators (#REs),
which allow the number of required and allowed repetitions of sub-expressions to
be defined using numerical parameters. A #RE Em..n denotes, intuitively, the
catenation of expression E with itself at least m and at most n times. For exam-
ple, a2..4 denotes the repetition of symbol a from 2 to 4 times, that is, L(a2..4) =
{aa, aaa, aaaa}. #REs are used, for example, in egrep [12] and Perl [19] patterns.
Also the recent W3C XML Schema Definition Language (XSDL) [17] uses regular
expressions with numerical occurrence indicators (minOccurs and maxOccurs)
to describe content types of XML [3] document elements.

? This work has been supported by the Academy of Finland (Grant no. 102270).

164 Pekka Kilpeläinen and Rauno Tuhkanen

In terms of language theory, numerical occurrence indicators are an inessen-
tial extension, since exactly the same class of regular languages can be described
with standard regular expressions without numerical occurrence indicators. On
the other hand, they are a natural and powerful shorthand notation: Expressing
an n-fold repetition of an expression E by an explicit catenation of n copies of E
lengthens the expression by factor n, which may be impossible to realize in prac-
tice1. (Notice that the value of an integer n is exponential with respect to the
length of its numerical representation used in an expression like Em..n.) There-
fore more efficient realizations of numerically controlled repetition are needed.
In spite of this, surprisingly little research has been devoted to this topic. Stan-
dard literature of regular expression implementation [1, 2, 16, 7] seems to ignore
numerical occurrence indicators, and we have not been able to find any docu-
mentation of the algorithms used, e.g., in Perl pattern matching.

It would seem promising to implement numerical occurrence indicators via
numerical counters attached to automata built of the expressions using some
classical construction. (See, e.g., [18, 1, 2, 4]). We are looking at this possibility,
but so far we have not found a method to translate a #RE to a deterministic
automaton adorned with such counters. (Simulation of a nondeterministic exe-
cution with counters could lead to a large number of alternative values for the
counters, which seems difficult to implement efficiently.) Laurikari’s work [15] is
related to this approach. He extends the transitions of NFAs provided by the
Thompson construction [18] with procedural tags in order to record the posi-
tions of the input word that are matched by sub-expressions of the pattern. The
tagged NFA is then converted to a DFA; possible ambiguities are resolved using
priorities assigned to the transitions of the NFA. A problem with this approach
is that it may not be possible to assign such priorities to the transitions of an
NFA when trying to implement the declarative semantics of regular expressions.

The rest of this paper is organized as follows: We present definitions of
#REs, and relate them to standard regular expressions in Section 2. Even though
#REs are exponentially more succinct than standard regular expressions, testing
whether a word is accepted by a #RE is tractable; this is shown in Section 3. In
Section 4 we consider the comparison of the languages described by two #REs:
whether one is a sub-language of the other, or whether they have any word in
common. Both problems are shown to be NP-hard.

In Section 5 we consider simple #REs, which consist of a single symbol and
a number of nested numerical occurrence indicators. We devise a simple and
efficient test for deciding whether a given word is accepted by a simple #RE.
Finally, Section 6 is a conclusion and a discussion of further work.

1 Apache Xerces, one of the most popular open-source XML parsers, uses this approach
to implement numerical repetition. Large enough occurrence values crash Xerces.

Regular Expressions with Numerical Occurrence Indicators 165

2 Regular Expressions with Numerical Occurrence
Indicators

Regular expressions describe languages, which are subsets of Σ∗ for a given
finite alphabet Σ. As usual, we define the closure L∗ of a language L with L∗ =⋃

i≥0 Li, where L0 = {ε} and Li+1 = LLi; here ε denotes the empty word, and
catenation of languages L1 and L2 is defined by L1L2 = {uv | u ∈ L1, v ∈ L2}.

Regular expressions are built of symbols ∅, ε, and a ∈ Σ connected together
using sequential catenation, infix operator |, postfix operator ∗, and parentheses
for grouping. The language L(E) described by a regular expression E is defined
inductively as follows:

L(∅) = ∅; L(ε) = {ε};
L(a) = {a} for a ∈ Σ; L(FG) = L(F)L(G);
L(F |G) = L(F) ∪ L(G); L(F ∗) = L(F)∗ .

Regular expressions with numerical occurrence indicators (#REs) use, in ad-
dition to the above standard constructs, expressions of the form Fm..n, where
m and n are non-negative integers satisfying m ≤ n. We call m the minimum
bound and n the maximum bound of Fm..n. The semantics of numerical occur-
rence indicators is defined as follows:

L(Fm..n) =
n⋃

i=m

L(F)i

= {v1 . . . vi | m ≤ i ≤ n, v1, . . . , vi ∈ L(F)} .

That is, L(Fm..n) consists of words formed by concatenating at least m and at
most n words of L(F). It is obvious that numerical occurrence indicators do not
increase the expressive power of regular expressions, since

L(Em..n) = L(E · · ·E(E|ε) · · · (E|ε)) ,

where E is repeated m times and (E|ε) is repeated n−m times.

3 Membership Testing

In this section we show that it is tractable to test whether a given word belongs
to the language defined by a regular expression with numerical occurrence indi-
cators. This is shown by the dynamic-programming algorithm which we describe
below.

Let w = a1 . . . an be an input word and let E be a #RE. The test for
w ∈ L(E) can be implemented by traversing the expression tree of E bottom-
up. During the traversal we compute for each sub-expression F of E a Boolean
value F.nullable, and a relation r(F). The meaning of these values is as follows:

F.nullable = true iff ε ∈ L(F), and
r(F) = {(i, j) | 1 ≤ i ≤ j ≤ n, ai . . . aj ∈ L(F)}

166 Pekka Kilpeläinen and Rauno Tuhkanen

That is, F.nullable indicates whether the empty word is accepted by expression
F , and r(F) is the occurrence relation of F consisting of pairs of start and end
positions of the non-empty sub-words ai . . . aj of w that match F . The members
(i, j) of an occurrence relation are called occurrence tuples. Then w ∈ L(E) if
and only if (1, n) ∈ r(E) or w = ε and E.nullable = true.

The base cases for computing the values of F.nullable and r(F) are as follows:

when F = ∅, F.nullable := false; r(F) := ∅;
when F = ε, F.nullable := true; r(F) := ∅;
when F = a ∈ Σ, F.nullable := false; r(F) := {(i, i) | 1 ≤ i ≤ n, ai = a}.

That is, occurrence relation r(a) consists of the single-position occurrence tuples
corresponding to the occurrences of symbol a in the input word a1 . . . an.

The inductive cases can be implemented using standard operations of rela-
tional algebra [6] on the occurrence relations of the sub-expressions. A choice
F = G|H can be implemented using union as follows:

F.nullable := G.nullable or H.nullable;
r(F) := r(G) ∪ r(H);

A catenation F = GH can be implemented by joining contiguous occurrence
tuples of sub-expressions together. A join between relations r and r′ restricted
by a condition θ on matching attributes is denoted by r on

θ
r′, and projection of

a relation r on its first and fourth attribute is denoted by π1,4(r). We use (i, j)
as the schema for all occurrence relations. Then a join condition which requires
matching occurrence tuples of r′ to occur immediately after the end position j
of occurrence tuples of r can be expressed as r.j = r′.i− 1. Catenation F = GH
can then be implemented as follows:

F.nullable := G.nullable and H.nullable;
r(F) := π1,4(r(G) on

r(G).j=r(H).i−1
r(H));

if G.nullable then r(F) := r(F) ∪ r(H);
if H.nullable then r(F) := r(F) ∪ r(G);

As an example of using join to implement concatenation, consider an input
word w = aaaaa of length 5, and expression F = GH, where G = H = (aa).
Then

r(G) = r(H) = {(1, 2), (2, 3), (3, 4), (4, 5)} ,

and

r(F) = π1,4(r(G) on
r(G).j=r(H).i−1

r(H))

= π1,4({(1, 2, 3, 4), (2, 3, 4, 5)}) = {(1, 4), (2, 5)} .

The evaluation of iterative expressions is based on repeating a join a number
of times. A key observation for efficient execution is that an occurrence relation
needs to be joined with itself no more than n times, when n is the length of the

Regular Expressions with Numerical Occurrence Indicators 167

input word. This holds because each join produces either an empty relation or
some new tuples whose end positions are strictly larger than the smallest end
position of an occurrence tuple produced so far.

For F = G∗ we set F.nullable := true, and its occurrence relation can be
computed as follows:

r := r(G); r′ := r(G);
for k := 2 to n do

r := r ∪ π1,4(r on
r.j=r′.i−1

r′);

r(F) := r;

Numerical iteration F = Gm1..n1 can be treated in a similar manner:

F.nullable := (m1 = 0) or G.nullable;
r := r(G); r′ := r(G);
if F.nullable then // L(F) = L(G0..n1)

for k := 2 to min{n1, n} do
r := r ∪ π1,4(r on

r.j=r′.i−1
r′);

else
for k := 2 to min{m1, n} do // required matches of G

r := π1,4(r on
r.j=r′.i−1

r′);

for k := m1 + 1 to min{n1, n} do // optional matches of G
r := r ∪ π1,4(r on

r.j=r′.i−1
r′);

endif;
r(F) := r;

As an example of iterating a join, consider matching input word w = ababab
against expression F = G2..3, where G = ab. Now r(G) = {(1, 2), (3, 4), (5, 6)},
which is assigned to both r and r′. The computation of the final value r of r(F)
proceeds as follows:

(for k = 2) r := π1,4(r on
r.j=r′.i−1

r′) = {(1, 4), (3, 6)}, and

(for k = 3) r := r ∪ π1,4(r on
r.j=r′.i−1

r′) = {(1, 4), (3, 6)} ∪ {(1, 6)}

Now (1, 6) ∈ r(F) indicates that w ∈ L(F).
When n is the length of the input word, the size of an occurrence relation is

at most n +
(
n
2

)
= O(n2). (This upper bound is reached, e.g., when w = an and

F = a∗.) Operations of relational algebra can be implemented in polynomial
time with respect to the size of the operand relations. (See, e.g., [8, Chap. 6]).
Since at most 3n relational operations are performed for each sub-expression of
the #RE, we see that the membership test, or matching against a #RE, can be
implemented in polynomial time with respect to the length of the input word.

The procedure sketched above is probably mainly of theoretical interest. Its
main drawback as a practical matching algorithm is the space required for storing

168 Pekka Kilpeläinen and Rauno Tuhkanen

the occurrence relations. We saw that quadratic space is needed in the worst case.
What we would like to have is a practical algorithm for matching #REs, which
would run in low-order polynomial time and in constant space.

4 Comparing Expressions with Numerical Occurrence
Indicators

In this section we consider the comparison of two #REs E and F . For example,
E and F could be two versions of some XSDL content model, and we would like
to test whether they are compatible. That is, we would like to know whether
they are equivalent, or whether one is a generalization of the other. The problem
can be expressed as a #RE inclusion problem: Does it hold that L(E) ⊆ L(F),
or vice versa? Notice that an algorithm for the inclusion problem gives also a
solution to the equivalence problem L(E) ?= L(F).

We show that comparison of #REs is NP-hard using reduction from the
NP-complete SUBSET SUM problem [9]. First we show the NP-hardness of the
#RE inclusion problem.

Theorem 4.1 The #RE inclusion problem is NP-hard.

Proof. Let a sequence of positive integers s1, . . . , sk and n form an instance
of the SUBSET SUM problem. (That is, “Is n =

∑
i∈I si for some subset I of

{1, . . . , k}?”). Form #REs E = an..n and

F = (as1..s1 |ε)(as2..s2 |ε) · · · (ask..sk |ε) .

Then L(E) ⊆ L(F) iff n =
∑

i∈I si for some I ⊆ {1, . . . , k}. �
Notice that expression F in the above reduction is ambiguous in the sense

that if it is used for matching a word an from left to right, it is not possible to
know without lookahead which symbols of the expression “match” the current
input symbol.2

Comparison of #REs seems difficult also for unambiguous expressions. Let
us call the testing of whether L(E) ∩ L(F) 6= ∅ for given #REs E and F the
#RE overlap problem.

Theorem 4.2 The #RE overlap problem is NP-hard.

Proof. Let s1, . . . , sk and n form an instance of the SUBSET SUM problem.
Form expressions E and F over alphabet Σ = {a1, . . . , ak} as follows:

E = (a1|a2| · · · |ak)n..n and
F = (as1..s1

1 |ε)(as2..s2
2 |ε) · · · (ask..sk

k |ε) .

2 This is the way that the SGML standard [13] and the XML and XML Schema
recommendations define the notion of unambiguity, which is a property required for
content-model expressions in these languages.

Regular Expressions with Numerical Occurrence Indicators 169

Both expressions are unambiguous, since each alphabet symbol occurs only once
in both of them. Notice that E accepts all words over Σ whose length is exactly
n. Now L(E) ∩ L(F) 6= ∅ iff n =

∑
i∈I si for some I ⊆ {1, . . . , k}. �

The above observations suggest that it is probably difficult to realize #REs
as deterministic automata, which is standard technology for implementing tra-
ditional regular expressions. In contrast, unambiguous (traditional) regular ex-
pressions can be translated to a corresponding DFA in linear time [4], and the
inclusion and overlapping of the languages accepted by DFAs can be tested in
low-order polynomial time, using a well-known cross-product construction. (See,
e.g., [11, 20].)

5 Simple #REs

In this section we consider simple #REs, which consist of a symbol and nested
numerical occurrence indicators only. An example of a simple #RE with two
nested occurrence indicators is given below:

E = (a3..4)1..2 (1)

Notice that simple #REs describe unary languages only.
Considering even simple #REs gives some insight of possible difficulties in

implementing #REs via automata. As an example, expression (1) above defines
the language

L(E) = L(a3..4) ∪ L(a6..8) . (2)

For example, accepting a6 ∈ L(E) would seem difficult using a Thompson-like
automaton [18, 1] built directly from expression (1): Since a4 ∈ L((a3..4)1..1) but
a4 6∈ L((a3..4)2..2), a simple-minded implementation might first match the four
initial symbols of a6 by a sub-automaton built of sub-expression a3..4; this would
leave two symbols that cannot be accepted by iterating this sub-automaton.

On the other hand, unfolding an expression in the style of (2) could produce
a very long expansion. We show below that expressing E = (am1..n1)m2..n2 as
a choice between sub-expressions of the form aim1..in1 may require for each i =
m2, . . . , n2 its own sub-expression which corresponds to an independent range
of accepted words. For example,

L((a5..6)1..4) = L(a5..6) ∪ L(a10..12) ∪ L(a15..18) ∪ L(a20..24) .

According to the next proposition it is possible that none of the n2−m2+1 ranges
(like {5, 6}, {10, 11, 12}, {15, . . . , 18} and {20, . . . , 24} above) either overlap or
meet, and thus cannot be expressed as a single repetition of a.

Proposition 5.1 Let m1 ≤ n1 and m2 ≤ n2. If n1 > n2(n1 −m1) + 1, then

i · n1 < (i + 1)m1 − 1

for all i = m2, . . . , n2 − 1.

170 Pekka Kilpeläinen and Rauno Tuhkanen

Proof. For i = n2−1 the conclusion is equivalent to the hypothesis. For smaller
values of i it is seen true by induction and the assumption of m1 ≤ n1. �

Nested occurrence indicators can be combined under certain conditions. This
holds, for example, if the minimum bound of the inner expression is zero:

Proposition 5.2 L((E0..n1)m2..n2) = L(E0..n1n2).

Proof. Inclusion from left to right holds because each word of L((E0..n1)m2..n2)
is a catenation of at most n1n2 words of L(E).

To see that L(E0..n1n2) ⊆ L((E0..n1)m2..n2) holds, notice that any word w ∈
L(E0..n1n2) is a catenation of i words of L(E) for some i ∈ {0, . . . , n1n2}. If
m2 ≤ i ≤ n1n2, then

w ∈
n2⋃

i=m2

 n1⋃
j=1

L(E)j

i

⊆
n2⋃

i=m2

 n1⋃
j=0

L(E)j

i

= L((E0..n1)m2..n2) .

Else, if i < m2, we can pad w with m2 − i empty words, and thus

w ∈ (L(E)0)m2−iL(E)i ⊆ (L(E)0 ∪ L(E)1)m2 ⊆
n2⋃

i=m2

 n1⋃
j=0

L(E)j

i

= L((E0..n1)m2..n2) .

�
The above proposition allows us to restrict, without loss of generality, to

simple #REs where zero occurs as the minimum bound of the outermost ex-
pression only. (If zero occurs as the minimum bound at some other level, we can
repeatedly eliminate the next outer level by applying Proposition 5.2.)

Let w = an. Next we derive a simple test for deciding whether w ∈ L(E) for
a simple #RE E. For this, consider simple #REs with k ≥ 1 nested occurrence
indicators. When k = 1, the test is trivial:

an ∈ L(am1..n1) if and only if m1 ≤ n ≤ n1 .

In the case of two nested occurrence indicators, notice that

L((am1..n1)m2..n2) =
n2⋃

i=m2

{am1 , am1+1, . . . , an1}i .

This means that w ∈ L((am1..n1)m2..n2) iff we can split w in i ∈ {m2, . . . , n2}
sub-words having their lengths in the range {m1, . . . , n1}. This holds iff

i ·m1 ≤ n ≤ i · n1 ,

which is equivalent to n/n1 ≤ i ≤ n/m1. It is straightforward to check that such
an i ∈ {m2, . . . , n2} exists if and only if

dn/n1e ≤ bn/m1c and bn/m1c ≥ m2 and dn/n1e ≤ n2 . (3)

Regular Expressions with Numerical Occurrence Indicators 171

For nesting-depths k > 2, consider an expression

E = (· · · ((am1..n1)m2..n2) · · ·)mk..nk , (4)

where the minimum bound mh is positive for all levels h = 1, . . . , k − 1. Now
w ∈ L(E) iff for some i ∈ {mk, . . . , nk} we can divide w in sub-words w1, . . . , wi

in such a way that

wj ∈ L((· · · ((am1..n1)m2..n2) · · ·)mk−1..nk−1)

for each j = 1, . . . , i. A similar division of each wj into smaller sub-words con-
tinues at lower levels h = 1, . . . , k − 1: Each sub-word u at level h has to split,
for some i ∈ {mh, . . . , nh}, into sub-words u1, . . . , ui of the next lower level h−1
so that

uj ∈ L((· · · ((am1..n1)m2..n2) · · ·)mh−1..nh−1)

for each j = 1, . . . , i. An example of this kind of level-wise splitting of word a36

into sub-words of length 5 or 6 is shown in Fig. 1.

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
2 ∈ {1,2}

3 ∈ {3,4}

h = 1:

h = 2:
4 ∈ {3,4}

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaa aaaaa aaaaa aaaaa aaaaaaaaaaaaaaaa

h = 3:

Fig. 1. A level-wise division which shows that a36 ∈ L(((a5..6)3..4)1..2).

Looking at the level-wise construction from the lowest level h = 1, we see
that w ∈ L(E) if and only if there is a suitable division of w in i ∈ {l, . . . , u}
sub-words; since these sub-words belong to {am1 , . . . , an1}, we have l = dn/n1e
and u = bn/m1c. Further, w ∈ L(E) iff the number i of these sub-words is
appropriate for the level h = 2. That is, we must have

bi ∈ L((· · · (bm2..n2) · · ·)mk..nk) . (5)

(Symbol b acts here as a place-holder for sub-words of this level.) An identical
situation holds at the next level: Condition (5) holds iff the following set is
non-empty:

{j ∈ {di/n2e , . . . , bi/m2c} | bj ∈ L((· · · (bm3..n3) · · ·)mk..nk)}

That is, a suitable value for i ∈ {l, . . . , u} exists iff the following set is non-empty:

I =
u⋃

i=l

{j ∈ {di/n2e , . . . , bi/m2c} | bj ∈ L((· · · (bm3..n3) · · ·)mk..nk)} .

172 Pekka Kilpeläinen and Rauno Tuhkanen

Now I = {j ∈ J | bj ∈ L((· · · (bm3..n3) · · ·)mk..nk)}, where

J =
u⋃

i=l

{di/n2e , . . . , bi/m2c} .

It turns out that set J consists of a single contiguous range of integers:

Proposition 5.3 Let l ≤ u and 1 ≤ m2 ≤ n2 be integers, and let

J =
u⋃

i=l

{di/n2e , . . . , bi/m2c} .

Then J = {dl/n2e , . . . , bu/m2c}.

Proof. Now

J = {dl/n2e , . . . , bl/m2c} ∪ {d(l + 1)/n2e , . . . , b(l + 1)/m2c} ∪
· · · ∪ {du/n2e , . . . , bu/m2c} .

The boundaries of the constituent sets of J increase by at most one at each step
from left to right. Since m2 ≤ n2, the upper bound increases at least once be-
tween any two increments of the lower bound, and thus J = {dl/n2e , . . . , bu/m2c}.

�
Proposition 5.3 means that testing the appropriateness of a range {l, . . . , u}

reduces to testing the appropriateness of the range {dl/n2e , . . . , bu/m2c} at the
next level.

The above observations are combined together in the following simple algo-
rithm that tests whether an ∈ L(E) for a simple #RE E consisting of k nested
numerical occurrence indicators, as given in equation (4). The algorithm com-
putes the boundaries l and u of the range {l, . . . , u} of possible sub-word counts
at levels h = 1, . . . , k, and returns true iff the range does not get empty (that
is, l ≤ u holds) and the required number of sub-words at the highest level h = k
can be satisfied within the outermost occurrence bounds mk and nk.

h := 1;
l := n; u := n;
while l ≤ u and h < k do

l := dl/nhe; u := bu/mhc;
h := h + 1;

return (l ≤ u and mk ≤ u and l ≤ nk);

It is easy to check that the algorithm works correctly also when the number
of nested occurrence indicators k is one or two; Notice that in the case k = 2 the
result of the algorithm is the same as the truth value of condition (3) above.

Regular Expressions with Numerical Occurrence Indicators 173

6 Conclusions and Further Work

We have reported some preliminary results about computational problems re-
lated to regular expressions with numerical occurrence indicators. #REs are used
in established text manipulation tools and in the recent W3C XML Schema Def-
inition Language (XSDL), but we are not aware of them having been treated in
the algorithmic literature before.

#REs can be expanded into equivalent regular expressions without numerical
occurrence indicators, but this lengthens the expressions by a factor which is
exponential with respect to the length of the original expression. We showed in
Section 3 that matching of #REs can be performed in polynomial time, without
translating them to traditional regular expressions. On the other hand, inclusion
and overlap problems between languages described by #REs were shown NP-
hard in Section 4.

We also considered so called simple #REs, and derived a simple numerical
membership test for languages described by them in Section 5.

We are currently trying to develop an efficient automata-based implemen-
tation for #REs. A specific application that we have in mind is the compari-
son of content model expressions in various XML schema formalisms, especially
XML DTD [3] and XSDL [17]. The Glushkov construction [10] seems promising,
since when applied to standard regular expressions which satisfy the unambi-
guity condition of SGML, XML and XSDL, it allows a corresponding DFA to
be constructed in linear time [4]. A Glushkov automaton of an expression is
also conceptually simple in the sense that there is a one-to-one correspondence
between the states of the automaton (except for the initial state) and the occur-
rences of alphabet symbols in the expression. Especially, all transitions entering
a state of a Glushkov automaton are labeled by the same symbol. This regularity
gives some promise that we might be able to utilize the results of Section 5 for
resolving local ambiguities which were alluded at the beginning of that section.

The NP-hardness results of Section 4 show that it is difficult to implement
the comparison of two #REs efficiently. We proved the #RE inclusion problem
NP-hard for ambiguous expressions only, though, which leaves the possibility of
an efficient inclusion test for XSDL content models open.

References

1. A.V. Aho. Algorithms for finding patterns in strings. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science – Volume A: Algorithms and Complex-
ity, chapter 5. Elsevier/MIT Press, 1994.

2. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, principles, techniques, and tools.
Addison-Wesley, 1986.

3. T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler, editors. Extensible
Markup Language (XML) 1.0 (Second Edition). W3C Recommendation, October
2000.

4. A. Brüggemann-Klein. Regular expressions into finite automata. Theoretical Com-
puter Science, 120:197–213, 1993.

174 Pekka Kilpeläinen and Rauno Tuhkanen

5. C.L.A. Clarke and G.V. Cormack. On the use of regular expressions for searching
text. ACM Transactions on Programming Languages and Systems, 19(3):413–426,
May 1997.

6. E.F. Codd. A relational model of data for large shared data banks. Comm. of the
ACM, 13(6):377–387, June 1970.

7. M. Crochemore and T. Lecroq. Pattern matching and text compression algorithms.
In A.B. Tucker, editor, The Computer Science and Engineering Handbook, chap-
ter 8. CRC Press, 2003.

8. H. Garcia-Molina, J.D. Ullman, and J. Widom. Database System Implementation.
Prentice Hall, 2000.

9. M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and
Company, New York, 1979.

10. V.M. Glushkov. The abstract theory of automata. Russian Mathematical Surveys,
16:1–53, 1961.

11. J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, second edition, 2001.

12. A. Hume. A tale of two greps. Software – Practice and Experience, 18(11):1036–
1072, November 1988.

13. International Organization for Standardization. ISO 8879: Information
Processing—Text and Office Systems—Standard Generalized Markup Language
(SGML), October 1986.

14. P. Kilpeläinen and D. Wood. SGML and XML document grammars and exceptions.
Information and Computation, 169:230–251, 2001.

15. V. Laurikari. NFAs with tagged transitions, their conversion to deterministic au-
tomata and application to regular expressions. In Proc. of the Seventh Intl. Symp.
on String Processing and Information Retrieval (SPIRE’00), pages 181–187. IEEE,
2000.

16. S. Sippu and E. Soisalon-Soininen. Parsing Theory, volume I: Languages and
Parsing. Springer-Verlag, 1988.

17. H.S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, editors. XML Schema
Part 1: Structures. W3C Recommendation, May 2001.

18. K. Thompson. Regular expression search algorithm. Comm. of the ACM,
11(6):419–422, June 1968.

19. L. Wall and R.L. Schwartz. Programming perl. O’Reilly & Associates, Inc., Se-
bastopol, CA, 1991.

20. D. Wood. Theory of Computation. John Wiley & Sons, Inc., 1987.

