
On Typechecking B

Antti-Juhani Kaijanaho

University of Jyväskylä
Department of Mathematical Information Technology

PO BOX 35 (Agora)
40014 University of Jyväskylä

FINLAND
antkaij@mit.jyu.fi

Abstract. The typechecking system of the formal method B is dis-
cussed. An inconsistency in the public definition of the B method, at-
tributable to a flaw in the typechecking system, is uncovered: the type-
checking method expects the types of variables to be given in one mem-
bership predicate, such as a, b, c ∈ A × B × C, instead of with several
membership predicates joined by conjunction, like a ∈ A∧b ∈ B∧c ∈ C,
even though such constructions are liberally used in the literature. A set
of modifications to the typechecking system fixing this flaw is presented
and analyzed.

1 Introduction

The B method [1] is a formal method for software construction, supporting spec-
ification, refinement and implementation, all in the same language. Proof-based
verification of all specifications, refinements and implementations is supported
by software-based tools.

The author started in late 2001 to build new, free1 software-based support
tools for the B method, employing the cleanroom tactic, where only public doc-
umentation is used and no non-disclosable information is accepted. The tools
are collectively called The Ebba Toolset, and its current state — not for gen-
eral use — is visible at Savannah (http://www.nongnu.org/ebba/). During this
effort, the author discovered several problems with the public definition of the
B method. One of them, attributable to a flaw in the typechecking system, is
discussed and elaborated in this paper.

This paper is organized as follows. Section 2 gives an overview of the B method.
Section 3 demonstrates the problem under discussion. Section 4 describes the
proposed remedy for the problem. Finally, in Sect. 5, the remedy is inspected
and analyzed.

2 An Overview of B

The B method was given a comprehensive definition by Jean-Raymond Abrial in
his B-Book [1]. The author has reformulated a large part of the definition in his
1 Free as in speech, not as in beer.

On Typechecking B 35

2002 Master’s Thesis [2], incorporating theoretical advances since the publication
of the B-Book (for example Steve Dunne’s work on generalized substitutions [3])
and correcting some of the problems reported in this paper. This section sum-
marises the main parts of the definition as they are relevant to this paper.

B has a layered design. At the core there is first-order logic. On top of that a
typed set theory is built. The notion of substitution inherent in predicate logic is
the seed for the next layer, the Generalized Substitution Language (GSL), which
is based on Dijkstra’s wp-calculus [4]. Finally, an Abstract Machine Notation
(AMN) is built on top of GSL.

We will in this paper mostly ignore the AMN and concentrate on the more
foundational layers, especially set theory. A summary of the (abstract) syntax
for the parts of B that we will discuss is given in Fig. 1, following the author’s
thesis [2]. Most of the rest of the notation can be defined using rewrite rules.
The constructs given in the figure that are marked ”derived” are associated with
rewrite rules that can be used to remove them.

In this article, we will use an informal concrete representation of the ab-
stract syntax, using parentheses for disambiguation. Following Abrial [1], we
declare that the middle dot (·) in quantifiers associates to the right and has the
highest precedence, followed by the right-associative negation connective (¬),
the left-associative conjunction and disjunction connectives (∧ and ∨, which
share precedence), the left-associative implication connective (⇒), and finally
the left-associative equivalence connective (⇔). The precedence and associativ-
ity of other operators is not specified. We will use boldface to indicate metavari-
ables; p, q and r stand for predicates, e and f stand for expressions, s and t
stand for substitutions, E stands for type assumptions and S and T stand for
types.

The semantics of most of the predicate, variable and expression constructs
in Fig. 1 should be self-explanatory. The rest is explained below:

– Predicates of the form [x := e]p and expressions of the form [x := e]p are
instances of the familiar substitution operation of first-order logic.

– In general, a predicate of the form [s]p denotes the weakest precondition for
the generalized substitution s given the postcondition p.

– Given a nonempty set e, choice(e) denotes a deterministically but arbitrarily
chosen element of the set e.

– BIG is an infinite set, mostly only used to build natural numbers in the
foundational theory.

– Set difference is denoted by “−”.
– The nonatomic variable frame(s) contains exactly those identifiers which

occur on the left side of an assignment substitution (:=) in s.

The semantics of the substitutions are defined by Abrial [1] by a multitude
of methods, generally by giving axioms for inferring with predicates of the form
[s]p. The author [2] uses the following rewrite rules under the assumption that

36 Antti-Juhani Kaijanaho

Predicate = Predicate, ’∧’, Predicate
| Predicate, ’∨’, Predicate (* derived *)
| Predicate, ’⇒’, Predicate
| Predicate, ’⇔’, Predicate (* derived *)
| ’¬’, Predicate
| ’∀’, Variable, ’·’, Predicate
| ’∃’, Variable, ’·’, Predicate (* derived *)
| ’[’, Substitution, ’]’, Predicate (* derived *)
| Expression, ’=’, Expression
| Expression, ’∈’, Expression
| ’infinite’, ’(’, Expression, ’)’; (* derived *)

Expression = Variable
| ’[’, Variable, ’:=’, Expression, ’]’, Expression
| Expression, ’,’, Expression
| ’choice’, ’(’, Expression, ’)’
| Expression, ’×’, Expression
| ’IP’,’(’, Expression, ’)’
| ’{’, Variable, ’|’, Predicate, ’}’
| ’BIG’
| Expression, ’∪’, Expression (* derived *)
| Expression, ’∩’, Expression (* derived *)
| Expression, ’−’, Expression (* derived *)
| ’{’, Expression, ’}’; (* derived *)

Variable = Identifier
| Variable, ’,’, Variable
| ’frame’, ’(’, Substitution, ’)’; (* derived *)

Substitution = Variable, ’:=’, Expression
| Predicate, ’|’, Substitution
| Predicate, ’=⇒’, Substitution
| Substitution, ’[]’, Subsitution
| ’@’, Variable, ’·’, Substitution
| Substitution, ’;’, Substitution
| ’skip’;

Type = ’type’, ’(’, Expression, ’)’
| ’super’, ’(’, Expression, ’)’
| Type, ’×’, Type
| ’IP’, ’(’, Type, ’)’;

Type predicate = ’check’, ’(’, Predicate, ’)’
| Type, ’≡’, Type;

Type assumption = ’given’, ’(’, (Identifier | ’BIG’), ’)’
| Identifier, ’∈’, Expression;

Type sequent = [Type assumption, {Type assumption}], ’`’, Type predicate;

Type rule =
{Type sequent}
Type sequent

;

Fig. 1. Abstract syntax for basic set notation, types and GSL.

On Typechecking B 37

substitutions are never used except as a part of predicates:2

[p | s]q :⇒ p ∧ [s]q (1)
[p =⇒ s]q :⇒ p⇒ [s]q (2)

[s [] t]q :⇒ [s]q ∧ [t]q (3)
[@x · s]q :⇒ ∀x · [s]q where x \ q (4)

[s; t]q :⇒ [s][t]q (5)
[skip]q :⇒ q (6)

2.1 Typechecking

Well-formed formulae of set notation in B are restricted by typechecking as well
as the syntax. The aim of types is to rule out all forms of paradox in the formal
system by restricting which formulae are well-formed.

Typechecking a predicate p containing no free variables consists of applying
Algorithm 1 to the type sequent given(BIG) ` check(p). Typechecking an ex-
pression e can be done by typechecking the predicate e = e. If there are free
variables, then appropriate type assumptions (either declaring them given sets
with given or giving them type with the ∈ operator) have to be prepended to
the type sequent before typechecking.

The metavariable i denotes an identifier, the metavariable E denotes a comma-
separated list of type assumptions, and the metavariables T and U denote types.

The typechecking algorithm given by Abrial [1] can be explicated as follows:

Algorithm 1 (Typechecking B according to Abrial). In this algorithm
and in the names of the typechecking rules, the apostrophe is a decoration of
numbers, and so i′ denotes the number i decorated with an apostrophe. The
algorithm uses standard unification (c.f. [5]) as tailored for the type language.

Precondition: Input is a type sequent.

1. Eliminate all derived constructs from the input.
2. Let i← 1.
3. Unify the input with the consequent of rule T i, and assign the unifier to σ.

If unsuccessful, go to step 7.
4. For each antecedent of rule T i, instantiate its variables using σ.
5. Verify each non-type-sequent antecedent. (This may require further unifica-

tion; if so, instantiate the unified variables in all antecedents.) If at least one
of them fail, go to step 7.

6. Apply this algorithm recursively to each type sequent antecedent. If all suc-
ceed, halt with success.

7. If there exists a rule T i′, let i← i′ and go to step 3.
8. If i = j′ for some j, let i← j and repeat this step.
9. If there is no number n strictly greater than i for which there exists a rule

T n, halt with failure.
2 The metalevel notation x \ p is to be pronounced “x does not occur free in p”.

38 Antti-Juhani Kaijanaho

10. Let i← j, where j is the least number strictly greater than i for which there
exists a rule T j, and go to step 3.

Postcondition: Output is an indication of success or failure.

Note that the algorithm is essentially a generic Prolog-like inference engine.
The typing rules for Algorithm 1 are given in Figs. 2 and 3. Composite

predicates are decomposed using rules T 1–T 3. Quantification is removed by
enlarging the environment in rules T 4–T 6. Rules T 7 and T 8 transform the
typechecking of primitive predicates (“∈” and “=”) to appropriate type equiv-
alence conjectures. Rules T 9–T 18 and their primed variants decompose the
expressions involved in a type equivalence conjecture (T 16 and T 16’ enlarge
the environment in the process). Rules T 19–T 20 decompose power set and
cartesian product expressions. Rule T 21 acts as the base case.

T 1
E ` check(p) E ` check(q)

E ` check(p ∧ q)

T 2
E ` check(p) E ` check(q)

E ` check(p ⇒ q)

T 3
E ` check(p)

E ` check(¬p)

T 4
i \ s i \ q for each q in E E, i ∈ s ` check(p)

E ` check(∀i · (i ∈ s ⇒ p))

T 5
E ` check(∀x · (x ∈ s ⇒ ∀y · (y ∈ t ⇒ p)))

E ` check(∀(x,y) · (x,y ∈ s× t ⇒ p))

T 6
E ` check(∀x · (p ⇒ q ∧ r))

E ` check(∀x · (p ∧ q ⇒ r))

T 7
E ` type(e) ≡ type(f)

E ` check(e = f)

T 8
E ` type(e) ≡ super(f)

E ` check(e ∈ f)

Fig. 2. First eight typechecking rules for Algorithm 1.

3 The Typechecker Is Broken

Abrial defines in B-Book [1] a type checking method which, taken at face value,
would report type error on many examples and even in some normative parts of
the definition. The method was reproduced earlier in this paper.

For example, the BASIC CONSTANTS machine specified on page 281 of
the B-Book [1] fails to typecheck. A part of its typechecking process leads to the

On Typechecking B 39

T 9
i ∈ s occurs in E E ` super(s) ≡ U

E ` type(i) ≡ U

T 10
E ` type(e)× type(f) ≡ U

E ` type(e, f) ≡ U

T 11
E ` super(s) ≡ U

E ` type(choice(s)) ≡ U

T 12
E ` IP(super(s)) ≡ U

E ` type(s) ≡ U

T 13
i ∈ s occurs in E E ` super(s) ≡ IP(U)

E ` super(i) ≡ U

T 14
E ` super(s)× super(t) ≡ U

E ` super(s× t) ≡ U

T 15
E ` IP(super(s)) ≡ U

E ` super(IP(s)) ≡ U

T 16
E ` check(∀x · (x ∈ s ⇒ p) E ` super(s) ≡ U

E ` super({x | x ∈ s ∧ p }) ≡ U

T 17
giveni occurs in E E ` i ≡ U

E ` super(i) ≡ U

T 18
E ` super(s) ≡ IP(U)

E ` super(choice(s)) ≡ U

T 19
T ≡ U

E ` IP(T) ≡ IP(U)

T 20
E ` T ≡ T′ E ` T′ ≡ U′

E ` T×U ≡ T′ × U ′

T 21
given(i) occurs in E

E ` i ≡ i

Rules 9′–18′ can be obtained from the corresponding rules 9–18 by applying to their
consequents the rewrite rule E ` T ≡ U :⇒ E ` U ≡ T.

Fig. 3. Rest of the typechecking rules for Algorithm 1.

40 Antti-Juhani Kaijanaho

following conjectural type sequent:3

given(Z) ` check(∀minint,maxint · (minint ∈ Z ∧maxint ∈ Z⇒ Z = Z)) (7)

Feeding this to Algorithm 1 results in a failure, as the following trace shows:

given(Z) ` check(∀minint, maxint · (minint ∈ Z ∧maxint ∈ Z⇒ Z = Z)) T 6
given(Z) ` check(∀minint, maxint · (minint ∈ Z⇒ maxint ∈ Z ∧ Z = Z)) fail

There is no typing rule in Figs. 2 and 3 whose consequent unifies with the last
sequent of the trace. The only one that comes close is T 5, but minint ∈ Z fails
to unify with (x,y) ∈ s× t.

Similar typing failures apply to most of the informative example machines in
the B-Book, and many published uses of the B method (such as [6]). Clearly this
failure is unintended, and the existing tools do not implement Abrial’s method
to the letter.

4 Fixing the Typechecker

The heart of the problem indicated in the previous section is that Abrial’s
typechecker requires that whenever a nonatomic variable is defined, e.g. as a
quantification variable, it must be given a type as a whole instead of giving
types to each constituent atomic variable (i.e. identifier) separately. Thus, for
example, instead of writing ∃x, y · (x ∈ Z ∧ y ∈ Z ⇒ x < y), one must write
∃x, y · ((x, y) ∈ Z× Z⇒ x < y). The same problem exists with set comprehen-
sions (such as {x, y | x ∈ Z ∧ y ∈ Z ∧ x = y }), since their typechecking defers,
due to rules T 16 and T 16’, to typechecking a universal quantification predicate.

We call quantification predicates and comprehension expressions of the forms

∀x ·(x ∈ e⇒ p) (8)
∃x ·(x ∈ e ∧ p) (9)
{x | x ∈ e ∧ p } (10)

regular. We call other syntactically well-formed quantification predicates and
comprehension expressions irregular. With this terminology, the task becomes
enlarging the type system to allow for certain irregular formulae.

The idea of the proposed fix is to go and find candidate types for the con-
stituent atomic variables of the quantification variable and to build a candidate
type from them for the whole bound variable. This new type can then be added
to the front of the quantified predicate which allows Abrial’s original typechecker

3 We elect to omit the lengthy and complicated exposition on typechecking AMN, so
we also omit the details on how this sequent is arrived at. Inessential complexity has
been removed from the sequent. Note that the predicate minint ∈ Z ∧maxint ∈ Z
is an unmodified part of the machine’s properties section, as given in the B-Book.
The last part, Z = Z, stands as a tautology for sections omitted from the machine.

On Typechecking B 41

to verify the new quantification predicate’s typing. The same procedure works
essentially unmodified for set comprehensions.

Additional typing rules for fixing the problem are given below.

T 5.5
p is not of the form x ∈ f ` typeQ(x,p, e) E ` check(∀x · (x ∈ e ⇒ (p ⇒ q)))

E ` check(∀x · (p ⇒ q))

T 16
` typeQ(x,p, e) E ` check(∀x · (x ∈ e ⇒ p)) E ` super(e) ≡ U

E ` super({x | p }) ≡ U

T 40
` typeQ(i,p, e)

` typeQ(i,p ∧ q, e)

T 41
` typeQ(i,q, e)

` typeQ(i,p ∧ q, e)

T 42
` typeQ(i,p, e)

` typeQ(i,p ⇒ q, e)

T 43 ` typeQ(i, i ∈ e, e)

T 44
` typeQ(x,p, e) ` typeQ(y,p, f)

` typeQ((x,y),p, e× f)

A new inference rule, T 5.5, is inserted to take care of an irregular quan-
tification. Abrial’s rules T 16 and T 16’ are replaced with new rules that allow
irregular set comprehensions. These new rules reference a new type predicate,
typeQ, whose behaviour is defined in five new rules, T 40–T 44. The choice of
numbering for these rules is arbitrary — 40 was chosen mainly so that this block
of rules does not interfere with numbering other possible extensions of the type
system — since their consequents do not overlap with the consequents of other
rules, with a single exception. Rules T 40 and T 41 have the same consequent,
and the intent is that angelic nondeterminism is used to choose between them.
Algorithm 1 tries them in numeric order and backtracks if the first one fails.

We will call Algorithm 1 together with the new set of typing rules extended
typechecking or the extended typechecker.

5 Analyzing the extended typechecker

The extended typechecker terminates for all input if Abrial’s original does. The
only likely candidate for causing nontermination is T 5.5, but it specifically
forbids its use on a predicate that it itself generates.

It is fairly easy to see, due to the backtracking nature of Algorithm 1, that
the new rules do not cause typechecking to reject any formulae Abrial’s original
system didn’t reject.

Finally, we will show that the extended typechecker does not extend the
expressive power of the language, thus ensuring that if the original system is
consistent, the new system is consistent as well. To this end, we prove that every

42 Antti-Juhani Kaijanaho

formula allowed by extended typechecking is logically equivalent to a formula
allowed by Abrial’s original typechecker:

Theorem 1. Let e1, . . . , em be expressions and let g1, . . . ,gn and i1, . . . im be
identifiers. Let e′

1, . . . , e
′
m be expressions such that ei = e′

i is a theorem for
each i. Further, let e be an expression and let p be a predicate. Finally, let E be

given(g1), . . . , given(gn), i1 ∈ e1, . . . , im ∈ em, (11)

and let E′ be

given(g1), . . . , given(gn), i1 ∈ e′
1, . . . , im ∈ e′

m. (12)

Then the following hold:

1. If E ` check(p) passes extended checking, then there exist expressions e′
i as

specified above and a predicate p′ such that E′ ` check(p′) passes Abrial’s
original typechecking and

∀(i1, . . . im) · ((i1, . . . im) ∈ (e′
1 × . . .× e′

m)⇒ (p⇔ p′)) (13)

is a theorem.
2. If E ` e ≡ e passes extended checking, then there exist expressions e′

i as
specified above and an expression e′ such that E′ ` e′ ≡ e′ passes Abrial’s
original typechecking and

∀(i1, . . . im) · ((i1, . . . im) ∈ (e′
1 × . . .× e′

m)⇒ (e = e′)) (14)

is a theorem.

Proof: We will assume that all derived constructs have been eliminated from all
formulae that we consider. Proof of this theorem proceeds by structural induc-
tion:

1. The cases where p is a conjunction, implication, negation, equality or set
membership, and the cases where e is a variable, a pair, choice, Cartesian
product, or BIG, are straightforward. We omit their proof.

2. Let p have the form ∀i · (i ∈ e ⇒ q), where i is an identifier and q is
a predicate. Now, due to T 5 and to the assumption that p passes ex-
tended typechecking, E, i ∈ e ` check(q) passes extended typechecking.
Thus, by induction, there exist e′

i and e′ as given above and a predicate q′

for which E′, i ∈ e′ ` check(q′) passes Abrial’s original typechecking and for
which (13), after appropriate substitutions, holds. Now, ∀i · (i ∈ e′ ⇒ q′)
will clearly qualify for p′.

3. The case where p has the form ∀x,y ·((x,y) ∈ (e×f)⇒ q), follows similarly
and its proof is omitted.

4. Let now p have the form ∀x · (q⇒ r), where x is a variable, q is a predicate
not of the form x ∈ f for some expression f , and r is a predicate. Now,
due to T 5.5 and to the assumption that p passes extended typechecking,

On Typechecking B 43

E ` check(∀x · (x ∈ e ⇒ (q ⇒ r))) passes extended typechecking, if e is
an expression such that ` typeQ(x,p, e) passes extended typechecking. By
induction, then, there exist expressions e′

i as given above and a predicate
p′ such that E′ ` check(p′) passes Abrial’s original typechecking and for
which (13), after appropriate substitutions, holds. Note that typeQ essen-
tially keeps only one set membership constraint for each identifier, dropping
any others off, and thus the predicate x ∈ e will imply q. Now p′ qualifies
as the p′ of the theorem statement, if

∀x · (q⇒ r)⇔ ∀x · (x ∈ e⇒ (q⇒ r)) (15)

is a theorem, and it is, since the following are equivalent:

∀x · (q⇒ r)⇔ ∀x · (x ∈ e⇒ (q⇒ r)) (16)

∀x · (q⇒ r⇔ x ∈ e⇒ (q⇒ r)) (17)

∀x · (q⇒ r⇔ q⇒ r) (18)

and the last of them is obviously a theorem.
5. Let e have the form {x | q }, where x is a variable and q is a predicate. Now,

the typechecking proposition follows in the same manner as in the previous
case.
To prove the other part of the proposition, we choose for e′ the expression
{x | x ∈ f ∧ q }, where f is an expression such that ` typeQ(x,p, f) passes
extended typechecking. Now, the equality

{x | q } = {x | x ∈ f ∧ q } (19)

is, by comprehension, equivalent to

∀x · (q⇔ x ∈ f ∧ q) (20)

which can be seen to be a theorem in the manner outlined above. ut

6 Conclusion

We pointed out a problem in the typechecking system of the B method, namely
that, although the B literature is full of formal text where variables declared
together are given types in separate membership predicates, joined by conjunc-
tions, the B typechecking system rejects all such input. We augmented the sys-
tem by additional typing rules and thus allowed the system to accept such input
where it is semantically reasonable.

Acknowledgements

The author would like to thank professor Tommi Kärkkäinen for his advice and
comments on drafts of this paper and Jonne Itkonen for his help in preparing
the final version.

44 Antti-Juhani Kaijanaho

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Kaijanaho, A.J.: The formal method known as B and a sketch for its implementation.
Master’s thesis, University of Jyväskylä, Department of Mathematical Information
Technology (2002)

3. Dunne, S.: A theory of generalised substitutions. In Bert, D., Bowen, J.P., Henson,
M.C., Robinson, K., eds.: ZB2002: Formal Specification and Development in Z and
B, Second International Conference of B and Z users, Grenoble, France. Number
2272 in Lecture Notes in Computer Science, Berlin, Springer (2002)

4. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall Series in Automatic
Computation. Prentice-Hall, Englewood Cliffs (1976)

5. Baader, F., Snyder, W.: Unification theory. In Robinson, A., Voronkov, A., eds.:
Handbook of Automated Reasoning. Elsevier (North-Holland), Amsterdam (2001)

6. Treharne, H., Schneider, S.: How to drive a B machine. In Bowen, J.P., Dunne, S.,
Galloway, A., King, S., eds.: ZB 2000: Formal Specification and Development in Z
and B, First International Conference of B and Z Users, York, UK. Number 1878
in Lecture Notes in Computer Science, Berlin, Springer (2000)

