
RITA Environment for Testing
Framework-based Software Product Lines

Raine Kauppinen and Juha Taina

University of Helsinki
Department of Computer Science
P. O. Box 26 (Teollisuuskatu 23)

FIN-00014 UNIVERSITY OF HELSINKI
e-mail: {Raine.Kauppinen, Juha.Taina}@cs.helsinki.fi

Abstract. A software product line can be used to implement a software
product family that is a set of software products sharing common fea-
tures. A natural implementation strategy for a software product line is
an object-oriented application framework. When software product lines
are tested, tool support is essential. Also, there is a need for product line
specific testing methodology. In this article, the RITA environment for
testing framework-based software product lines is introduced.

1 Introduction

A software product line can be used to implement a software product family
that is a set of software products that share common features. A natural imple-
mentation strategy for a software product line is an object-oriented application
framework [5]. It is a partial design and implementation of an architecture, and
basic functionality for an application that belongs to a given family. As such,
frameworks can be used to capture commonalities between different applications
in a software product family while allowing variation among its members. A
framework-based application may be executable even if some of the application
specific parts are missing, if the framework itself is executable and application
specific parts that are not available can be replaced with stubs. When a frame-
work is used to implement the core of a product line, framelets are often used as
well. A framelet is a mini-framework that contains less than ten classes and has
a simple, clearly defined interface [16].

The current testing methods for frameworks and product lines are quite
immature, so there is a need for new testing methods. The testing process should
be supported by testing tools and automated as much as possible. In this article,
we introduce the design of the RITA environment that can be used in testing
of framework-based product lines. This article is organized as follows. Section
2 is an overview to related work relevant to this article. Section 3 is a brief
introduction to the current state-of-the-art of product line testing. Section 4
introduces the RITA environment. Section 5 discusses the current status of RITA
and future work. Section 6 concludes this article.

RITA Environment for Testing Framework-based Software Product Lines 59

2 Related Work

The product line approach for software development is currently under extensive
research. There have been a few large scale projects that have studied the product
line approach and product families, for example, the ARES project [6]. Also, SEI
has developed a framework for software product line practice [15]. In addition,
some case studies involving software product lines have been made [1,2]. The use
of application frameworks to implement product lines has been studied throughly
by several research projects [3,5,18].

Surprisingly little is written about testing in the product line approach. Nat-
urally, the traditional object-oriented methods for testing large applications or
frameworks and reusing software components can be used [3,12,19], but there is
also growing demand for a well-defined product line testing process and method-
ology including tool support [17]. One approach to product line testing is pre-
sented in the SEI’s framework for software product line practice [15]. Also Mc-
Gregor and Sykes have defined a testing process and introduced methodology
and tools that can be used in the product line approach [11,13].

3 Testing in the Product Line Approach

Product line testing, like the traditional testing of a single application, is usually
performed according to the standard V-model [4,11]. However, if the V-model is
to be used, product line testing process has to be integrated with a higher level
product line business process [9].

Unlike the V-model that has become a standard approach for testing a single
application, there is no standard process framework that would integrate the
overall product line business process to the product line testing process. Instead,
there are several process frameworks that can be used. For example, the ESAPS
and CAFÉ projects [10] and SEI have their own process frameworks [15].

Integrating testing to product line process frameworks has proved to be some-
what problematic in practice [8]. It seems to be unclear from the business point
of view where testing belongs in the overall product line process. For example,
both CAFÉ’s and SEI’s process frameworks imply that testing is performed ac-
cording to the standard V-model, but neither framework explicitly integrates
the V-model to the overall product line process. However, SEI’s process frame-
work has a detailed description of different testing phases related to development
phases of the process framework.

According to the existing product line process frameworks, testing is based on
generating, managing and using reusable test assets that contain test suites and
other test artifacts [11]. To effectively manage test assets, a test asset repository
is needed. Reusable assets contain artifacts that can be reused throughout the
lifecycle of a product line. The assets include, for example, documents, use cases,
scenarios, classes and other software components [10]. Testing related assets
include, for example, test plans, test suites and test reports [13].

The asset repository can be separated or integrated. The standard way to
implement the asset repository is to separate and manage application code and

60 Raine Kauppinen and Juha Taina

test assets with a database management system (DBMS). Next to this, object-
oriented application frameworks also provide a simple way to integrate the appli-
cation code and the assets via inheritance mechanism. This idea has been applied
in the form of built-in tests [19]. The idea is to integrate tests into classes of an
application framework. In this way, tests can be inherited to the classes that
implement the application framework. In other words, built-in tests can be used
as default properties or services of the classes in an application framework [7].

While test assets and their use in the product line approach have been stud-
ied, the current product line practice does not describe which testing methods
should be used when product lines are tested [8]. The asset repository and test
artifacts are used to support testing, but no product line specific testing meth-
ods have been presented apart from the build-in tests. Instead, it is assumed
that the methods are similar to the traditional object-oriented testing methods.
Also, product line testing is lacking tool support. Although traditional testing
tools designed for testing of a single application can be used, there is a need for
product line specific testing tools.

4 RITA: fRamework Integration and Testing Application
for Product Lines

The RITA environment for product line testing is designed to tackle the key
question of how the traditional object-oriented testing methods should be used
when product lines based on object-oriented application frameworks are tested.
RITA provides an environment specifically designed for testing of framework
and framelet-based product lines. It includes services for interface class identi-
fication, code profiling, coverage criteria analysis, driver and stub generation,
test management, and statistics. The environment can be used, on one hand, to
apply the existing object-oriented testing methods in the product line context,
and, on the other hand, to explore new, product line specific testing methods.

4.1 RITA Inputs and Outputs

The main input for RITA is the application code consisting of the code from
a framework, framelets and application specific code elements. In addition, the
environment needs information about the interfaces of between the framework,
framelets and application specific code elements. This information describes in-
terfaces that are used to extend the framework with framelets or application
specific code. A framelet can also be extented with application specific code via
similar interface. An interface used to extend a framework or a framelet consists
of templates and hooks [7,16].

A template is a class that contains a template method that has references
to one or more abstract hook methods residing in one or more abstract hook
classes. Application specific parts or framelets are plugged into a framework or a
framelet by instantiating a hook method. A hook method can be instantiated by
implementing the abstract hook class it resides in or by overriding the abstract

RITA Environment for Testing Framework-based Software Product Lines 61

hook method. The latter option can be used only if the template method and
the hook method reside in the same class, that is, when the template class and
the hook class are the same class. A hook is connected if one or more of its
hook methods are instantiated and a template is connected if the hook methods
referenced from it are connected.

Testing related inputs of RITA are test materials and drivers and stubs
needed for testing of the possibly partial application. These can be either gener-
ated manually or by the RITA environment. Outputs of the environment include
test results that contain information about passed and failed tests, statistics of
the tests (for example, different coverages), new test cases generated by the envi-
ronment (based, for example, on template and hook interfaces) and new drivers
and stubs that are generated by the environment if needed [17].

4.2 RITA Views

The RITA environment provides four views to the application under testing. The
views are framework view, template view, class view and method view. Each view
offers view-specific testing services for the application. Figure 1 shows an exam-
ple application to be tested with RITA. The application is a real-time database
management system application derived from a framework-based DBMS prod-
uct line. The framework of the example provides database services and offers
three hooks for application specific expansions. Two of the hooks are extended,
both with framelets. Framelets provide real-time capabilities and disk manage-
ment functions. The framelet providing real-time capabities has three hooks of
which two are extended with application specific code. One extension provides
services for scheduling and the other provides service for transactions. This ex-
ample is used in the following chapters to describe the four views of the RITA
environment.

Fig. 1. An example of a real-time DBMS application of a framework-based DBMS
product line

62 Raine Kauppinen and Juha Taina

The framework view is the product line level view to the application under
testing. It offers services for testing between framework elements (the frame-
work, and framelets and application code elements connected to the framework).
The framework view includes, for example, application-level black-box testing
services and statistics of application-level coverages. At this view frameworks,
framelets and application code elements and their connections are shown. Un-
connected hooks are also visible, but the class hierarchy of elements is not shown.

The framework view of the application in Fig. 1 is shown in Fig. 2. The view
shows the framework, the two framelets and the two application code elements
of the application. When any of these elements is clicked, corresponding tem-
plate view is opened. The view also shows the two unconnected hooks of the
application.

Framelet 1
(Real−time)

Framework

Application code 2
(Transactions)

Application code 1
(Scheduling)

Framelet 2
(Disk management)

(Databases)

Unconnected hook

Fig. 2. The framework view of the example application shown in Fig. 1

The template view shows a UML class diagram of a framework, a framelet or
an application code element. The diagram includes template and hook classes of
the element, so interfaces between the element in question and other framework
elements is visible at this level. The template view offers services for interface
testing. The services include automatic test case generation for interface test-
ing between framework elements, and automatic driver and stub generation for
framework element interfaces among other things.

The template view of the framelet providing real-time capabilities, Framelet
1 in Fig. 2, is illustrated in Fig. 3. The view shows the UML class diagram of
the framelet. In the framework area, the abstract hook class FrameworkHook is
shown. Its counterpart, the instantiated hook class FrameletHookInstancia-
tion1 that is used to extend the framework is shown in the framelet area of
the view. If the framework area surrounding the class FrameworkHook is clicked,
the template view of the framework is shown. If the class itself is clicked, the
corresponding class view is shown.

RITA Environment for Testing Framework-based Software Product Lines 63

In addition to the instantiated hook class, the framelet area shows the other
classes of the framelet. They include classes that implement the functionality of
the framework (FrameletClass1, FrameletClass2 and SimpleStateMachine),
and also template and hook classes that provide the three hooks of the framelet.
First hook is provided by classes FrameletTemplate1 and FrameletHook1, sec-
ond by the class FrameletTemplateHook1 and third by classes FrameletTem-
plate2 and FrameletHook2. The hook that uses the classes FrameletTemplate1
and FramletHook1 is not implemented. When a class in the framelet area is
clicked, the corresponding class view is shown.

The class view offers two presentations for a class. The first shows the method
references of each method of the class and the other shows the code of the
class. The class view offers services for class testing. It includes standard object-
oriented testing services. The services include, for example, interface testing of a
class, testing of a class state and method collaboration testing. Driver and stub
generation is supported by providing places where manually generated drivers
and stubs can be plugged in. The exact services of this view are under design
and will not be implemented in the first prototype of RITA.

The class view of the class SimpleStateMachine in Fig. 3 is shown in Fig.
4. Figure 4 shows both presentations of the class view: the method reference
presentation of the class is shown on the left and the code presentation on the
right. In this case, the class contains only three methods. The constructor of
the class, method SimpleStateMachine has no references to other methods.
Method changeState, however, uses the method isValid. The methods of this
class do not contain method calls to other classes. Such references are shown in
the method reference presentation so that the arrow from the calling method
is connected to the class which holds the called method. When a method is
clicked in the method reference presentation or in the code presentation, the
corresponding method view is shown.

The method view offers services for unit testing at the method level. This
view includes various coverage criteria (for example, code-based, state-based and
constraint-based coverages) and a list of recognized independent paths through a
method. Also this view provides places for manually generated driver and stubs.

The method view offers two presentations for a method. The first is a flowchart
view to the method and the other is the code of the method which could be used,
for example, in illustrating the statement coverage in addition to showing the
actual method code. The method view of the method changeState in Fig. 4 is
shown in Fig. 5. The figure shows the flowchart of the method on the left and
the code on the right.

The four views of RITA provide a hierarchical way to use test cases. For ex-
ample, the results of a test case used at template view to test hook and template
interfaces can be seen and evaluated in the lower levels as well. This is true for
test cases used at every view of RITA. This hierarchical approach provides addi-
tional information about testing, because every view has specific testing features.
At class view, for example, it is possible to see the method references invoked by
a test case used originally at template view. Furher information about the cover-

64 Raine Kauppinen and Juha Taina

abstract hookMethod()

*

abstract hookMethod()

FrameletClass2 public SimpleStateMachine

public SimpleStateMachine()
public boolean ChangeState(int state)
public boolean isValid()

private int currentState
private boolean validStates[]

*

abstract hookMethod()

or hook class
Connected template

or hook class
Not connected template

Framework abstract FrameworkHook

templateMethod()

FrameletTemplate1

*

0..1

hookMethod()

FrameletHookInstanciation1

FrameletClass1

abstract FrameletHook1

0..1

*

templateMethod()

FrameletTemplate2

abstract FrameletHook2

1

Framelet 1

templateMethod()

abstract hookMethod()

FrameletTemplateHook1

A class providing
framelet functionality

Fig. 3. The template view of Framelet 1 in Fig. 2

age of the test case can be obtained from the method view, where, for example,
the statements of any method the test case has executed are shown.

RITA Environment for Testing Framework-based Software Product Lines 65

17: if (this.validStates[state] == true)
18: return true;
19: else
20: return false;

22: }
21: }

public boolean isValid(int state)

public boolean changeState(int state)

public SimpleStateMachine()

The method reference presentation of the class The code presentation of the class

 ...

 ...

7: }
6: validStates = {true, true, false};
5: currentState = 0;
4: public SimpleStateMachine() {
 // constructor

 ...

3: private boolean validStates[];
2: private int currentState;

1: public class SimpleStateMachine {

 // accessors

15: }
14: return changeOk;

13: changeOk = false;
12: else
11: currentState = state;

9: boolean changeOk = true;
8: public boolean changeState(int state) {

10: if (this.isValid(state) == true)

16: public boolean isValid(int state) {

Fig. 4. The class view of SimpleStateMachine in Fig. 3

1

2

3

4 5

6

1: public boolean changeState(int state)

2: boolean changeOk = true;

3: if (this.isValid(state) == true)
4: currentState = state;
5: changeOk = false;
6: return changeOk;

The flowchart presentation of the method

public boolean changeState(int state) {
 boolean changeOk = true;

 if (this.isValid(state) == true)
 currentState = state;
 else
 changeOk = false;

 return changeOk;
}

The code presentation of the method

Fig. 5. The method view of the method changeState in Fig. 4

4.3 Product Line Testing Process Supported by RITA

The testing process supported by RITA is illustrated in Fig. 6. The process re-
quires a test plan based on requirements as input, since RITA does not support
test planning or requirement specification. Test cases are generated mostly man-
ually, but the environment can generate additional test cases automatically based
on, for example, hook and template information. After test cases are generated

66 Raine Kauppinen and Juha Taina

and selected for execution, the environment scripts and executes the tests. After
tests are run, results can be evaluated based on the test report generated by
the environment. RITA also manages testing assets thoughout the process, for
example, by maintaining a test asset repository.

Test specification
Output: Test cases Output: Test scripts

Test scripting Test execution
Output: Test results

Test management

Test evaluation
Output: Test report

Iteration

Input: Test plan
Changes to
test scripts

Repeated test casesNew test
cases

Fig. 6. Testing process supported by RITA

The testing process is iterative. Based on the results of executed tests, new
test cases can be generated and tests scripts may be updated. The existing tests
can also be repeated without change, for example, when regression testing is
performed. When new test cases are generated, either manually or automatically,
the process is repeated for them. It is also possible that test scrips need to be
changed, for example, because interfaces of the application under testing have
been changed.

The RITA environment can be used to test a single application. In this case,
the test plan is designed specifically for the application and the testing process is
iterated according to its lifecycle. However, the RITA environment is focused on
testing of product lines instead of testing of single applications. When product
lines are tested, the test plan covers the entire product line. It specifies how the
framework of the product line is tested before applications are derived from it.
The test plan specifies also how the derived applications are tested. In this case,
the testing process is iterated throughout the lifecycle of the product line. In
this way, actual product line testing can be performed and existing test assets
can be effectively reused.

5 Current Status and Future Work

We have recently finished the first prototype of the RITA environment. The pro-
totype implements framework, template, class and method views and provides

RITA Environment for Testing Framework-based Software Product Lines 67

code profiling services, partial coverage criteria analysis (hook and template cov-
erages are not implemented) and basic test management functionality and statis-
tics. At this point it seems that there is a clear need for both the environment
itself and for new testing theory aimed at binding the high-level product line
testing process frameworks to the low-lewel testing methodology in the product
line context.

One of the main advantages of RITA is that it visualizes the structure of a
framework-based product line application. The environment also visualizes the
parts of the application that are covered by executed test suites. The visualiza-
tion helps to identify the problem areas of framework-based applications. The
framework view helps to understand the structure of the application and the
relationships between a framework, framelets and application specific code el-
ements. The template view illustrates the interfaces between different parts of
the application. The class and method views provide more traditional aids to
testing. For example, the class view can be used to find dead code segments and
unnecessary references to other classes or methods. The method view can be
used to gain detailed information about the algorithms used in the application.

In addition to visualizing framework-based applications, RITA can be used
as a reverse-engineering tool for applications that are not framework-based, since
the environment is able to generate framework, template, class and method views
for these kind of applications as well. In this case, the framework view shows the
entire application as black box, and template view shows the UML class diagram
of the entire application. The class and the method views are similar to those
generated from framework-based applications.

With RITA, we have applied traditional object-oriented measures of coverage
at the component level of product line testing. In addition, product line specific
measures of coverage that can be used to evaluate the overall testing coverage
over a product line have proven to be useful. Therefore, we propose two new
coverage criteria for framework-based product line applications: hook coverage
and template coverage [8]. Template and hook coverages define how much of the
functionality of hand-written application code elements and framelets extending
an application framework via hooks have been covered with existing test suites.
Informally, hook coverage is the statement coverage of all the connected hooks
provided by executed test suites. Template coverage is the number of references
from all the connected template methods to connected hook methods that are
covered by executed test suites. Template and hook coverages can be used to
measure the coverage of an entire product line application or a single framework
or a framelet. They can be used to measure the progress of the implementation
in addition to measuring the adequcy of the testing performed.

Currently, information about templates and hooks of the application under
testing has to be generated manually. External tools can be used to import this
information to RITA. For example, if the framework of the application is gener-
ated with a framework editor, the hook and template class information may be
imported from the editor. One such editor is the FRED tool [18]. Another pos-

68 Raine Kauppinen and Juha Taina

sibility is to import the information from a tool that can regognize the template
and hook classes of the framework as patterns, such as the MAISA tool [14].

The template and hook information makes it possible to, on one hand, to
test thoroughly the core of a product line (the framework) as well as entire
applications derived from it. On the other hand, it is possible to partially test
a product line application. Application specific parts can be tested separately
starting from interface where they will be plugged in. This requires driver support
that RITA also provides. Similar approach can be used to test framelets. A driver
replacing the template is used to apply the instantiated hook of a framelet. In
this, stubs may be required as well, if any of the framelet extensions needed are
not available.

A key area of our future work with RITA is to identify templates and hooks
automatically from the source code. We will implement a template and hook
class identifier that first recognizes potential templates and hooks. The identifier
then shows a list of candidates and the end user chooses the actual templates
and hooks.

Other areas of future work include support for product line specific cover-
age criteria such as hook and template coverage, implementation of automatic
driver and stub generator and advanced test management services with a test
asset repository. We expect that the RITA environment will evolve into a useful
environment for product line testing that can be used also in practical soft-
ware engineering projects in addition to its research use. This will take time
and resources and require co-operation with industrial partners. Also, thorough
evaluation of the RITA environment and the theory behind it is needed.

6 Conclusions

The state-of-the-art of product line testing is immature, so there is a clear need
for more mature testing methodology. Most of the research so far has concen-
trated on the product line testing process and on the assets that can be reused
thoughout the process. Regarding these issues, product line process frameworks
and ideas of asset repositories have been formulated. However, there is a gap
between the product line testing process and the practical testing methods. It is
not clear which object-oriented testing methods can be effectively used in this
particular context. Testing also lacks necessary tool support and automation
that are essential to the product line approach.

However, the work to tackle the problems encountered is under way. The
product line testing process is under extensive research and new testing method-
ology is being developed. The CAFÉ project and its followup projects in Europe
and SEI in the USA are currently studying new testing theory and deriving
practical methodology and tools to be used with product lines. Examples of the
work done in the CAFÉ project are the development of the RITA environment
for testing of framework-based product lines and the definition of hook and tem-
plate coverages.

RITA Environment for Testing Framework-based Software Product Lines 69

Acknowledgements

This work was funded by Nokia Research Center as a part of the ITEA project
CAFÉ (project number 00004). The authors would also like to thank the other
members of the RITA project, professor Jukka Paakki and research assistant
Antti Tevanlinna from the University of Helsinki, for their valuable comments
and ideas regarding this work.

References

1. Bosch, J., Product Line Architectures in Industry: A Case Study. Proceedings of
the 21st International Conference on Software Engineering (ICSE’99), Los Angeles,
California, USA, May 1999, 544-554.

2. Cohen, S., Product Line State of the Practice Report. Technical Note CMU/SEI-
2002-TN-017, Carnegie Mellon University, Software Engineering Institute, October
2002.

3. Fayad, M., Hamu, D., Brugali, D., Enterprise Frameworks Characteristics, Criteria,
and Challenges. Communications of the ACM, Volume 43, Number 10, October
2000, 39–46.

4. Fewster, M., Graham, D., Software Test Automation – Effective Use of Test Execu-
tion Tools. Addison-Wesley, 1999.

5. van Gurp, J., Bosch, J., Design, Implementation and Evolution of Object-Oriented
Frameworks: Concepts and Guidelines. Software – Practice and Experience, Volume
31, Number 3, March 2001, 277–300.

6. Jazayeri, M., Ran, A., Linden, F. (eds.), Software Architectures for Product Families:
Principles and Practice. Addison-Wesley, 2000.

7. Jeon, T., Seung, H., Lee, S., Embedding Built-in Tests in Hot Spots of an Object-
Oriented Framework. ACM SIGPLAN Notices, Volume 37, Number 8, August 2002,
25–34.

8. Kauppinen, R., Testing Framework-based Software Product Lines. Master’s Thesis,
University of Helsinki, Department of Computer Science, 2003, to appear.

9. van der Linden, F., Software Product Families in Europe: The Esaps & Café
Projects. IEEE Software, Volume 19, Number 4, July/August 2002, 41–49.

10. van der Linden, F., ESAPS-CAFÉ Inputs. Proceedings of the 3rd ITEA
Symposium, Amsterdam, Netherlands, October 2002, URL: http://www.itea-
office.org/symposium/ [March 21, 2003].

11. McGregor, J., Testing a Software Product Line. Technical Report CMU/SEI-2001-
TR-022, Carnegie Mellon University, Software Engineering Institute, December
2001.

12. McGregor, J., Korson, T., Integrated Object-Oriented Testing and Development
Process. Communications of the ACM, Volume 37, Number 9, September 1994,
59–77.

13. McGregor, J., Sykes, D., A Practical Guide to Testing Object-Oriented Software.
Addison-Wesley, 2001.

14. Nenonen, L., et al., Measuring Object-Oriented Software Architectures from UML
Diagrams. Proceedings of 4th International ECOOP Workshop on Quantitative Ap-
proaches in Object-Oriented Software Engineering, Sophia Antipolis, France, June
2000, 87-100

70 Raine Kauppinen and Juha Taina

15. Northorp, L. (director), A Framework for Software Product Line Practice – Ver-
sion 3.0. Software Engineering Institute, Carnegie Mellon University, 2001, URL:
http://www.sei.emu.edu/plp/framework.html [March 21, 2003].

16. Pree, W., Design Patterns for Object-Oriented Software Development. Addison-
Wesley, 1995.

17. Taina, J., Paakki, J., Kauppinen, R., RITA - a fRamework Integration and Testing
Application. Proceedings of the Finnish Data Processing Week (FDPW’02), Petroza-
vodsk, Russia, July 2002, to appear.

18. Viljamaa, A., Pattern-Based Framework Annotation and Adaptation – A System-
atic Approach. Licentiate Thesis, Report C-2001-52, University of Helsinki, Depart-
ment of Computer Science, 2001.

19. Wang, Y., et al., On Built-in Test Reuse in Object-Oriented Framework Design.
ACM Computing Surveys, Volume 32, Number 1 (electronic supplement), March
2000, 7–12.

