Domain-Specific Language Agents

Merik Meriste', Ténis Kelder', Jiiri Helekivi', Leo Motus®

! University of Tartu, Estonia
{Meri k. Meriste, Tonis.Kelder, Jyri.Helekivi}@it.ee
? Tallinn Technical University, Estonia
Leo. Mbt us@lcc.ttu. ee

Abstract. Multi-agent systems are proposing a new design concept for software
— the kenetic software design — based on the concept of interactive agents. On
the basis of this conceptual view, interacting agents appear as an appropriate
conceptual tool for the development of domain-specific languages. Domain-
specific language will be considered as a consensual collection of interrelated
autonomous notions and, the language processor as a cluster of interacting
agents i.e. a multi-agent representing language notions. This paper suggests an
agent-based modeling framework as a possible methodological basis for DSL
design and development.

1 Introduction

An interesting aspect in domain-specific languages (DSL) is that of formal models
and frameworks for DSL design and for the development of appropriate models of
language notions and language constructs. To what extent the formal methods applied
support the reasonable structuring of information objects and problem solving, is a
crucial aspect of modeling. The efficient implementation and accordance of the model
with problem area specification language concepts are usually valued most in this
process. A reasonable framework is expected to provide tools for DSL modeling and
implementation on a conceptually clear basis. The variety of contextual views and
application areas accentuate the complicated nature of the task. The success of system
modeling depends on the extraction of surface and/or deep (regular or contextual)
substructures from the information environment and their subsequent attachment to
computational activities. Multi-agent systems are proposing a new design concept for
software — the kenetic program design — based on the concepts of interactions and
agents.In this paper we consider the idea of kenetic design of DSL processors. Do-
main-specific language is treated as a collection of interrelated autonomous notions
and, its language processor as a cluster of interacting agents i.e. a multi-agent repre-
senting the domain-specific language by notions.

On the basis of this conceptual view the interactive attributed automata concept is
considered as a potential particular framework for DSL modeling and implementa-
tion. Attributed automaton is a state transition machine introduced and applied ini-
tially for purposes of structuring and conceptual specification of knowledge on the
basis of regular attributed structures [1,2,3,4,5,6,7,8,9,10]. To support the decomposi-

Domain-Specific Language Agents 83

tion of a specification or computational task into a network of components, an attrib-
uted automaton has finite memory distributed to its states, as well as computations
and communication actions at transitions. Interactive compositions of Attributed
Automata (AA) serve as a tool while treating AA as complex computational agents.
Basic interactive AA composition techniques are implemented in interactive AA
visual development environment prototype described in this paper. Attributed
automaton and interactive attributed automaton were later on identified as a kind of
Wegner’s sequential interaction machine and multi-stream interaction machine re-
spectively [11,12,13].

The integrated presentation and specification of knowledge will obviously remain a
research and technological development problem, for DSL too. Thus, on the one
hand, the development of models for conceptual, expert and procedural knowledge, as
well as of appropriate methods for knowledge presentation and management is essen-
tial for the successful use of definite DSL in practice. On the other hand, we would
like to focus in this context on the domain-specific language as an environment for
modeling and managing information objects and problem solving actions for the pres-
entation of linguistic notions. The next section will consider different views of a do-
main-specific language — as a problem-solving environment (i.e., a kind of commu-
nity of practice), a collection of intelligent agents [14], and as a cluster of interaction
machines. Section 3 will present the AA concept. Section 4 will concentrate on the
interactive AA approach as a DSL development and implementation tool based on the
paradigm of interactive computations.

2 Agents, Interactive Computations and Communities of Practice

Design and implementation methods for software-intensive systems have undergone a
remarkable evolution during the last decades. Algorithmic approach in computer
science and software engineering has been substituted by interaction-centered para-
digms. In artificial intelligence a similar shift, from logic-based to agent-based mod-
els, has taken place. Interaction-centered systems appear to be more powerful problem
solvers than algorithm centered. It is also suggested that algorithmic models alone do
not suffice to express certain expected aspects of behavior of today’s systems — e.g.
ability to self-organize the interaction of its components, to adapt its behavior to the
changes in its environment, or in its goal function. Multi-agent approach or kenetics
[15], is proposing a new design concept for software — the kenetic program design —
based on the concept of interacting autonomous agents. Conceptually, each compo-
nent of a system can be envisaged as an agent with its skills and its goals and with all
the agents attempting to respond the needs of the user of the system.

Interacting autonomous agents as a paradigm for software design suggest the obvi-
ous idea to model DSL as a collection of agents, i.e. as a distributed (artificial) intelli-
gent system. Each component of a system can be envisaged as an agent with its skills
and its goals and with all the agents attempting to respond the needs of the user of the
system. This interesting approach leads to the problem of kenetic design of a DSL
processor. We will consider a (domain-specific) language as a collection of interre-
lated autonomous notions and, the language processor as a cluster of interacting per-

84 Merik Meriste, Tonis Kelder, Jiiri Helekivi, Leo Motus

sistent agents i.e. a multi-agent of language notions. We consider that kind of model-
ing framework as a methodologically suitable basis for DSL design and development
tools

On the other hand, a (domain-specific) language certainly is a consensual collec-
tion of notions which forms the basis of the problem solving environment for particu-
lar communities of practice. The concept of community of practice is a central con-
cept of the theory of social learning [16]. In this approach, the primary unit of analysis
is neither the individual nor social institution but the informal community of practice
that is formed for some activity. The particular problem-solving environment (here
DSL) will serve as a handy tool to the extent that it simulates and supports the basic
notions, principles and extensibility of the language and, thereby, integrates the key
components of these communities of practice.

In terms of interactive computations, the computational agents and communities of
practice are a kind of interaction machines, as introduced by Peter Wegner. “Though
interaction machines are a simple and obvious extension of Turing machines, this
small change increases expressiveness so it becomes too rich for mathematical mod-
els. Interaction machines have single or multiple interaction streams and synchronous
or asynchronous actions and can differ along many other dimensions™ [11].

In general, interactive computation involves, unlike algorithmic computation, dy-
namic interaction streams of computational agents [11,13]. Such a computation can be
considered as a kind of distributed control of information streams and agents activities
in a dynamic environment [12]. A cluster of agents often shows a behavior that is
rather complex and organized, despite the simplicity of each single agent. In this
aspect, explicit application of interactive computations leads from systems with algo-
rithmic behavior to systems with either sequential interactive behavior (a pair of in-
teracting agents) or with multi-interactive behavior. This observation conforms per-
fectly to the software engineering principles of programming-in-the-large and pro-
gramming-in-the-small. Moreover, the agent-based approach in (domain-specific)
language design and implementation seems extremely intriguing in the context of
these observations.

3 Attributed Automata

Attributed automata were introduced as a model of executable specifications based on
regular structures with attributes attached to structure nodes. Regularity is here treated
in terms of formal languages — primitive items can be composed into a structure by
means of concatenation, selection and iteration operations. Attributes serve for the
presentation of contextual relations, as well as of properties and meaning of underly-
ing concepts.

Attributed automaton is a state transition machine with distributed finite memory at
its states and specified at its transitions computations and communication actions. In
this aspect, an attributed automaton is simply a generalization of a traditional finite
automaton with attributes and computational relations attached to states and transi-
tions of the automaton, respectively. Attributed automaton in terms of formal lan-

Domain-Specific Language Agents 85

guages is considered as a recognizer based on regular data structures, the respective
class of formal grammars is that of regular attribute grammars [17].

Consider examples of syntax-directed recognizers for binary numbers (Fig.1) and
for a context-sensitive language (Fig.2). Attributed automaton (Fig.1) recognizes
binary numbers and the final attribute value a represents the decimal value of the
binary number. In another automaton (Fig.2) attributes are in a different role, they
collect contextual information used in some states to select the next transition. As our
examples demonstrate, there are alternative possibilities to construct traditional syn-
tax-directed compilers on the basis of simple regular attributed structures.

Fig. 1. Recognizer of binary numbers.

Fig. 2. Recognizer of the context-sensitive language L = { a" b" ¢" |n>0}.

There exist several extensions of the concept of finite state machine with memory.
Attributed automaton can be distinguished among them by distributed memory, i.e. by
allocating memory to the states of the computation. Distributed memory together with
the local definition of data transformation functions helps to decompose/compose an
attributed automaton. Note that hierarchical composition functions as a tool for the
adequate modeling of hierarchical data structures and hierarchical computational
structures. This idea is rooted in the interpreting automata concept, applied in Vienna
method for defining programming languages [18].

In the modeling of interactive systems it appears important for the system to react
adequately to the changes in its environment. These changes cannot be predicted,
such a system is inherently interactive, i.e. responds to changes in its environment by
performing infernal changes, which, in turn, will be registered by the environment as
some internal events of the system. We call AA simulating interactive systems inter-
active AA. In these automata, the sequence of internal events (transformations of at-

86 Merik Meriste, Tonis Kelder, Jiiri Helekivi, Leo Motus

tribute values) will be in some manner synchronized with external events in the envi-
ronment. Interactive attributed automata represent a certain kind of multi-stream in-
teraction machines introduced by Wegner [11,12,13].

For example, the parsing of Dyck languages [19] is solved by interactive AA as
follows (Fig. 3). The regular structure of a string is represented by the moves of AA,
counters of parentheses are represented as attributes. An interactive automaton is
constructed for counting certain kinds of parentheses (‘[1°. *()°, ‘{}’). Automata inter-
act with each other for recognition of a string of parentheses.

n=n+1; c=c
(
°) n=n-1; c=c&(n>0) @)_n=n-1; c=c&(n>0)
[

S

e

w'

n=n-1; c=c&(n>0)

b) Accounting of parenthesis [and '] ¢' = Al! (¢)

Fig. 3. Grammar: S—>SS|() [(S)|[11[S]

4 Interactive Modeling of Languages

The considerations described above led us to the design and implementation of a
system for the visual development of interactive AA. Such a development environ-
ment will serve as an instrumental tool for the design, as well as for the implementa-
tion of various applied software. To quote Peter Wegner [11]: “The “negative result”
that interactive behavior is not expressible by Turing machines determines a “positive
challenge” to develop practical models of interactive computation”. Moreover, we are
encouraged by our pilot practice experience. Interactive AA compositions are expres-
sive in solving non-algorithmic problems. Some algorithmic problems can be more
efficiently solved by interactive techniques.

Domain-Specific Language Agents 87

The basic interactive AA composition techniques are implemented in a prototype
system programmed in Java. The communication technique applied is that of Java
Message Service (JMS). Automata are interacting by sending messages, both point-
to-point and publish-and-subscribe methods are available. Sending a message is
treated as a separate process that can affect the evaluation of attributes for the next
state. A message can be accepted either in the synchronous mode — acceptance in-
cluded in the selection process of the next state or, in the asynchronous mode — an
arriving message initiates a specific separate process of acceptance, which in its own
turn may affect the values of attributes.

The collection of interactive automata designed to solve a problem forms a cluster
of agents, i.e. a multi-agent. Member agents of a cluster may be activated as one com-
plete task on a computer or, as a distributed task. In the first case, agents can ex-
change information by common (cluster) attributes and messages, in the second case
only by messages. A cluster of agents often shows a behavior that is rather complex
and organized, despite the simplicity of each single agent. In this aspect, application
of interactive AA (as interaction machines) leads from systems with algorithmic be-
havior to systems with either sequential interactive behavior (a pair of interacting
agents) or with multi-interactive behavior. This observation conforms perfectly to the
software engineering principles of programming-in-the-large and programming-in-
the-small. Moreover, the agent-based approach in (domain-specific) languages design
and implementation seems extremely intriguing in the context of these observations.

Our prototype system of interactive AA (an agent-based problem-solving environ-
ment) is, in a sense, a system of programming where the software is constructed by
means of collaborative (interacting) computational agents. Components constructed
are saved as items of the common database of automata — agents. From the specifica-
tion of agents of a particular task, a Java-program will be compiled. Notions and
terms applied in an automaton are specified by means of the so-called axiom-classes
(specific Java-classes, representing notions of the problem domain). Notions are
implemented as particular notion-classes derived from axiom-classes. The application
is derived from particular notion-classes and compiled in the context of constructs
(terms and notions), specified by the user. Such a style of implementation supports the
system’s flexibility — by changes in notion-classes new properties can be introduced
to the cluster as a whole. On the other hand, at some level, Java-programming is
needed.

From the viewpoint of language implementation we take a ‘notion view’ of DSL
design, in that a language is designed as a set of interrelated autonomous notions. A
language processor will be constructed as a cluster of interactive AA (agents) of lan-
guage notions. An agent "represents" an instance of a particular notion, i.e. the no-
tion's representation, its structure, properties and meaning. The task of the notion
agent is to secure the appropriate translation/interpretation of every notion instance in
its given specific context. The contextual and structural relations of the notions in-
cluded in a language are specified in terms of the properties of the notion agent and its
interactions with other notion agents. If necessary, the notion agents will apply other
agents for traditional subtasks of syntax-directed translation and code generation. In
other words, an implementation of a language is specified as a multi-stream interac-
tion machine [12, 13]

88 Merik Meriste, Tonis Kelder, Jiiri Helekivi, Leo Motus

As an example of the multi-agent approach for DSL in the framework of interac-
tive attributed automata, let us consider a tiny interaction language for an online ticket
sales system. The example problem is borrowed from [20]. Customers buy tickets
from a ticket server. The server communicates only with sales agents. Customers can
ask the agent for various services. These services include reserving tickets, paying for
and getting the reserved tickets, and canceling reservations. The language of commu-
nication between the customers and agents consists of a couple of notions only, as
given in figure 4. Implementation of the language by automata is given in figure 5.

Customer

Ticket
server

Customer —> Agent: want to buy, cancel_res, pay

Agent —> Customer: reserved, not approved, canceled, tickets, sold_out,
try_later, too_many, queue_full

Fig. 4.

Request

inmessage

ed

accept tickets
or rejest

Ship

inmessage

ot understood|
g€ not understood

Precondition 1: Wait
server failure ==> Wait

want to buy ==> Request
otherwise ==> Wait
Precondition 2: Request

tickets available ==> Pay
tickets sold out ==> Wait
otherwise ==> Request
Precondition 3: Pay

request accepted ==> Ship
request rejected ==> Ship
otherwise == Pay
Precondition 4: Ship

done ==> Wait
otherwise ==> Ship

Fig. 5.

Domain-Specific Language Agents 89

5 Conclusion

During the last decade the paradigm for designing software systems has gradually
shifted from the algorithm-centered to the interaction-centered approach. Idea of
agent-oriented software engineering is rapidly spreading. The crucial methodological
aspect of modeling software systems is to what extent the formal methods support the
reasonable structuring of the problem domain. Interactive agents appear as a feasible
basic framework for the design and implementation of (domain-specific) languages.
Interactive translation models enable to create a semantically richer modeled world,
also for domain-specific languages. As any other artificial languages, the DSL, too,
are first only partially designed, evolving gradually in the process of communication
and observation. As an interactive model, it leads to better structured system, better
expressiveness and reduces complexity. On the other hand, the incompleteness of the
model is inherent price for the freedom of multi-agent design, i.e. it remains an art of
translation

References

1. Meriste, M., Penjam, J.: Attributed Finite Automata. In: Proc. of Int. Workshop CC’92 on
Compiler-Compiler, Reports of the University of Paderborn 103, 1993, pp.48-51.

2. Meriste, M., Penjam, J.: Toward Knowledge-based Specifications of Languages. In:
J.Barzdins, D.Bjorner (Eds.), Baltic Computer Science, LNCS, 502, Springer Verlag, 1991,
pp.65-76

3. Meriste, M., Penjam, J.: Attributed Finite Automata. Res. Rep. CS23/91, Institute of
Cybernetics, Estonian Academy of Sciences, Tallinn, 1991, 15p.

4. Meriste, M., Penjam, J.: Attributed Models of Computing. Proceedings of the Estonian
Academy of Sciences. Engineering, 1(2), 1995, pp. 139-157.

5. Meriste, M., Penjam, J., Vene, V.: Models of Attributed Automata. Informatica, 9(1), 1998,
pp-85-105.

6. Juhola, M., Meriste, M.: An Attributed Automaton for Recognizing of Nystagmus Eye
Movements. IAPR Papers on Structural and Syntactic Pattern Recognition, Bern, 1993,
pp.194-206.

7. Gronfors, T., Meriste, M.: Attributed Automata in Pattern Recognition of Digital Signals.
Computer Methods and Programs in Biomedicine, 1993, pp.763-785.

8. Koski, A., Juhola, M., Meriste, M.: Syntactic Recognition of ECG Signals by Attributed
Finite Automata. Pattern Recognition, 28(12), 1995, pp.1927-1940.

9. Gronfors, T.. Novel Methods of Syntactic Pattern Recognition for Peak Detection of
Auditory Brainstem Responses. Doctoral Dissertation, University of Kuopio, Publications
C. Natural and Environmental Sciences 28,1994.

10. Koski, A.: On Structural Recognition and Analysis Methods Applied to ECG Signals.
Doctoral Dissertation, University of Turku, Computer Sci. Res. Reports R-97-1, 1997.

11. Wegner, P.: Why Interaction is more Powerful than Algorithms. Communications of the
ACM, 40(5), 1997, pp.80-91.

12. Wegner, P.: Interactive Software Technology. In: Handbook of Computer Science and
Engineering, CRC Press, 1997.

13. Wegner, P., Goldin, D.: Interaction as a Framework for Modelling. In: Chen et al (eds).
Conceptual Modelling: Current Issues and Future Directions, 1999, LNCS vol. 1565.

90 Merik Meriste, Tonis Kelder, Jiiri Helekivi, Leo Motus

14.
15.
16.
17.
18.
19.

20.

Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowledge Engi-
neering Review, 10(2), 1995, pp.115-152.

Ferber, J.: Multi-Agent Systems. Addison-Wesley, 1999.

Wenger, E.: Communities of Practice. Cambridge University Press, London, 1998.

Meriste, M., Vene, V.. Attributed Automata and Language Recognizers. In: Proc. of 4™
Symposium on Programming Languages and Sofiware Tools. Visegrad, Hungary, June 9—
10, 1995, p.114-121.

Ollongren, A.. Definition of Programming Languages by Interpreting Automata. Academic
Press, London, 1974.

Ginsburg, C., Greibach, S.: Deterministic context-free languages. Inform. and Control,
9(6), 1996, pp.620-648.

Wang, W., Hidvégi, Z., Bailey Jr., A.D., Whinston, A.B.: E-Process Design and Assurance
Using Model Checking. Computer, 33(10), 2000, pp.48-53.

