
Efficient implementation of
Unicode string pattern matching

automata in Java

Janne Nieminen

Report A/2005/2

ISBN 951-781-270-1

ISSN 0787-6416

UNIVERSITY OF KUOPIO

Department of Computer Science

P.O.Box 1627, FIN-70211 Kuopio, FINLAND

Efficient implementation of Unicode string
pattern matching automata in Java

Janne Nieminen
University of Kuopio

Department of Computer Science

November 8, 2005

Abstract

We study different efficient implementations of an Aho-Corasick
pattern matching automaton when searching for patterns in Unicode
text. Much of the previous research has been based on the assumption
of a relatively small alphabet, for example the 7-bit ASCII. Our aim
is to examine the differences in performance arising from the use of
a large alphabet, like the 16-bit Unicode that is widely used today.
The main concern is the representation of the transition function of
the pattern matching automaton. We examine and compare array,
linked list, hashing, balanced tree, perfect hashing and triple-array
representations. For perfect hashing, we present an algorithm that
constructs the hash tables in expected linear time and linear space.

We implemented the Aho-Corasick automaton in Java using the
different transition function representations, and we evaluate their per-
formance. Triple-array performed best in our experiments, with per-
fect hashing, hashing and balanced tree coming next. We discovered
that the array implementation has a slow preprocessing time when
using the Unicode alphabet. It seems that the use of a large alphabet
can slow down the preprocessing time of the automaton considerably
depending on the transition function representation used.

Keywords: string pattern matching, Aho-Corasick, implementation,
transition function

1

1 Introduction

String pattern matching has many applications: lexical analysis phase of a
compiler, bibliographic search, and more recently, web search engines and
computational biology. A specific pattern matching problem is to locate all
occurrences of a finite number of keywords in a string of text. An efficient
algorithm to solve this problem has been presented by Aho and Corasick [1].
This algorithm is based on building a pattern matching automaton to scan
the text.

A central implementation concern of this pattern matcher is the repre-
sentation of the transition function of the machine. Possible data structures
to use are array, linked list, binary search tree and hashing [11]. One special
form of hashing that is applicable here is perfect hashing [10]. Another elab-
orate data structure, the triple-array, has been proposed by Aho, Sethi and
Ullman [2] as an efficient implementation of a transition function. Aoe [3]
has introduced an improvement over the triple-array, called the double-array
structure. To our knowledge there has been little experimental research ad-
dressing the problem of transition function representation for pattern match-
ing automata. Arikawa and Shinohara [4] have studied the run-time efficiency
of an Aho-Corasick machine with a few different representations of the tran-
sition function.

Up until recently, many applications of string pattern matching have been
assuming the use of a relatively small alphabet, for example the ASCII char-
acter set that has the size of 128 symbols. With the advent of Java, the use
of Unicode as a character set has been growing more and more popular. Uni-
code has 65536 different character codes, and therefore potentially presents
different problems in pattern matching. Also, large alphabets arise naturally
in the growing field of computational biology [11]. To our knowledge, there
has been little research addressing the use of large alphabets in string pattern
matching machines.

The purpose of this paper is to experimentally compare the performance
of different representations of the transition function of an Aho-Corasick
pattern matching automaton using Unicode character set. We also analyze
the problems that are a result of using a large alphabet. The automaton is
implemented using Java. We discuss and compare array, linked list, hashing,
perfect hashing, red-black tree, and triple-array representations. We measure
the speed of these implementations, taking into account the time to build the
automaton. The paper by Arikawa and Shinohara [4] only addresses run-time
speed; however, we will see that preprocessing speed can be important when
using large alphabets, so we include it in our measurements.

We have not found any data on how perfect hashing compares in speed

2

to other simpler data structures when implementing string pattern matching
machines. Aoe mentions in his paper [3] that the double-array structure can
be used in implementing the transition function instead of perfect hashing,
but does not provide any comparison. We explore this by implementing the
triple-array structure, which is the basis of the double-array structure, and
compare its performance to that of perfect hashing and other representations.
This gives indication on the performance of the double-array compared to
other structures.

Our experiments show that for the Unicode alphabet, an array imple-
mentation of the transition function is surprisingly not always the fastest
implementation due to a slow preprocessing time, especially when the num-
ber of patterns increases. Linked list, perfect hashing, and triple-array also
each suffer from slow preprocessing, with triple-array preprocessing being
clearly slowest. This however only becomes evident on very large pattern
sets. Overall the fastest implementations are those based on a triple-array
and perfect hashing, with ordinary hashing and red-black tree coming not
far behind. Both perfect hashing and triple-array offer theoretical constant
run-time access speed, but triple-array is faster in our experiments. Linked
list is clearly the slowest of these implementations.

The preprocessing stage of the search has two potential bottlenecks: the
first is the building of the trie where we have to check if a transition is already
present, and the second is the phase where we build the failure function using
a breadth-first search. The performance of a data structure during these two
phases largely determines the preprocessing speed of the implementation.
The speed of the preprocessing stage of the search gains importance if the
length of the target text is small.

The rest of this paper is organized as follows. In Section 2, we define a
pattern matching automaton and present algorithms that build the automa-
ton and perform the search. In Section 3 we present the different transition
function representations. In Section 4 we discuss the implementation details
of the pattern matching automaton, and in Section 5 we present and analyze
the experimental data. Section 6 is a summary of the results.

2 Pattern matching automaton

An Aho-Corasick pattern matching automaton [1] is defined for a finite set
of strings K as M = (S,Σ, g, f, h), where

• S is a finite set of states. Each state is represented by a number. 0 is
designated as an initial state.

3

• Σ is an input alphabet.

• g : S × Σ→ S ∪ {fail} is a transition function.

• f : S − {0} → S is a failure function.

• h : S → P(K) is an output function, where P(K) is the power set of
K.

A pattern matching automaton is built from the pattern set K. The au-
tomaton scans the target text one character at a time, and outputs any
locations in the text that contain a pattern in K. The patterns may overlap
with each other. Initially the automaton starts in state 0. Now assume that
the automaton has reached state s. After reading an input symbol a, we
check if g(s, a) 6= fail. If true, the automaton changes to state g(s, a). If
g(s, a) = fail, the automaton changes to state f(s) using the failure function,
until g(s, a) 6= fail. Finally, the automaton outputs h(sn) using the output
function, where sn is the state reached after reading the input symbol a.
The value of the output function may be empty. The automaton repeats this
sequence of actions until all the characters of the target text are processed.
This search is described in Algorithm 1 [1].

Algorithm 1 The search phase of the Aho-Corasick automaton for target
text string a1a2 . . . an.

state = 0;
for i = 1 to n do

while g(state, ai) = fail do
state = f(state);

end while
state = g(state, ai);
print h(state);

end for

The automaton is built using Algorithms 2 and 3 [1]. In Algorithm 2,
the transition function g and a part of the output function h are computed.
Notable here is that when adding a new pattern p to the automaton in the
while loop of the enter -method, we have to check for each character a of the
pattern if g(state, a) 6= fail, where state is the current state of the automaton.
In Algorithm 3, the failure function f is computed and the output function h
is completed. Here note that we execute a breadth-first search of the states
in the while loop. This means that for each state s, we have to follow each
transition out from s. We will see that these two requirements are important
in the efficient implementation of the transition function.

4

Algorithm 2 Phase one of the construction of the Aho-Corasick automaton
for patterns K = {k1, . . . , kn}, where the transition function g and part of
the output function h are calculated.

newState = 0;
for i = 1 to n do enter(ki);
end for
Set g(0, a)=0 for each a such that g(0, a) = fail ;

procedure enter(a1a2 . . . am)
state = 0;
j = 1;
while g(state, aj) 6= fail do

state = g(state, aj);
j = j + 1;

end while
for p = j to m do

newState = newState + 1;
g(state, ap) = newState;
state = newState;

end for
h(state) = {a1a2 . . . am};

end procedure

5

Algorithm 3 Phase 2 of the construction of the Aho-Corasick automaton,
where the failure function f is calculated and the output function h is com-
pleted.

empty queue;
for all a such that g(0, a) = s 6= 0 do

add s to queue;
f(s) = 0;

end for
while queue is not empty do

remove r from queue;
for all a such that g(r, a) = s 6= fail do

add s to queue;
state = f(r);
while g(state, a) = fail do

state = f(state);
end while
f(s) = g(state, a);
h(s) = h(s) ∪ h(f(s));

end for
end while

3 Transition function representations

The most straightforward implementation of the transition function is to
code it as a two-dimensional array A indexed by a character a and a state
s. Because in a typical pattern matching automaton each state contains
only a few transitions, the array A is essentially a sparse matrix. In this
representation we have to use some character code such as −1 as meaning
“not defined” when there is no transition out of state s on character a, i.e.
when g(s, a) = fail..

The array representation has a serious drawback: we need to have an
Σ-sized array for each state of the automaton. When Σ is large, say 65536 as
in Unicode, the amount of space required for the transition function grows
high as the number of states of the automaton increases. Because in a state
s the transition function is not defined for most characters, it is possible to
store transitions for those characters a only for which g(s, a) 6= fail. This is
the basis for all the other data structure representations that we consider.
We can store the transitions from each state in a linked list, a balanced tree
or a hash table. Let n be the number of transitions leaving from a state of
the automaton. In the worst case a linked list has O(1) insertion time and

6

O(n) access time, a balanced tree has O(log n) insertion time and O(log n)
access time and a hash table has O(1) insertion time and O(n) access time.
However, the average access time of a hash table is O(1).

Two more elaborate implementations are possible. We discuss these next.

3.1 Perfect hashing

In perfect hashing we select the hash function so that the worst case access
time isO(1). This can be done by taking advantage of the static set of keys for
an Aho-Corasick automaton: once we have computed the transition function,
no updates or deletions will occur. There are a number of techniques that
can be used for perfect hashing [13, 7, 10]. We use here a method introduced
by Fredman, Komlós and Szemerédi [10]. This method was chosen because
it is relatively simple to implement and it has been described and analyzed
thoroughly in the textbook by Cormen, Leiserson, Rivest and Stein [8].

The idea is to use two-level hashing and to choose the hash function from
a universal class of hash functions [6] at each level. The hash tables of these
two levels are called the primary and secondary hash tables. Fredman et
al. have shown that by using a universal hash function with the two-level
hashing scheme and by choosing the size of the primary and secondary hash
tables carefully, the expected worst case access time for this form of hashing
is O(1). We use the following class of universal hash functions [6, 8]:

ha,b(k) = ((ak + b) mod p) mod m,

where m is the size of the hash table, p ≥ m is a prime, a ∈ {1, 2, . . . , p− 1},
b ∈ {0, 1, . . . , p− 1}, and k is the key to hash.

The textbook by Cormen et al. [8] describes this form of perfect hashing,
but does not provide an algorithm to build the hash tables. In Algorithm 4
we present a straightforward implementation of this perfect hashing scheme.
It is a Las Vegas algorithm that builds the perfect hash tables in linear
expected time and linear space.

The algorithm proceeds in two phases. In phase 1 we hash the keys to
linked lists in the primary hash table. First we choose the four parameters
a, b, m and p for the hash function. A prime p is chosen that is greater
than any key value, and the size m of the hash table is set to the number of
keys n. The hashing is done in the repeat-until loop by selecting parameters
a and b randomly from the designated intervals, and hashing the keys k to
lists Ki in the primary hash table, where i ∈ {0, 1, . . . ,m− 1}. We continue
the loop until we have discovered such values of a and b that the expression∑m−1

i=0 |Ki|2, which corresponds to the combined size of the secondary hash

7

Algorithm 4 Algorithm for construction of a perfect hash table for patterns
K = {k1, . . . , kn}
.

// Phase 1: build the primary hash table
Choose a prime p, where p ≥ max{k1, . . . , kn};
m = n;
repeat

Randomly choose a ∈ {1, . . . , p− 1} and b ∈ {0, . . . , p− 1};
for i = 0 to m− 1 do Ki = empty list;
end for
for all k ∈ {k1, . . . , kn} do

j = ((ak + b) mod p) mod m;
Add key k to list Kj;

end for
size =

∑m−1
i=0 |Ki|2;

until size < 4n

// Phase 2: build the secondary hash tables
for i = 0 to m− 1 do

// Now Ki = {k ∈ K | h(k) = i};
mi = |Ki|2 ;
repeat

Randomly choose ai ∈ {1, . . . , p− 1} and bi ∈ {0, . . . , p− 1};
Hash keys k ∈ Ki to a secondary hash table i
with the hash function hi(k) = ((aik + bi) mod p) mod mi;

until NOT collisions
end for

8

tables, is less than 4n.
In phase 2, the secondary hash tables are built. In the for-loop we go

through all the lists of the primary hash table. The keys in each list are
hashed to a secondary hash table. First we set the size mi of the secondary
hash table to be the square of the number of keys in the list, and let p be
the same prime as in phase 1. Then in the repeat-until loop the selection
of the parameters ai and bi of the hash function is executed in a similar
manner as in phase 1. This time we abort if any collisions are detected. The
loop is executed until we find parameters ai and bi that do not produce any
collisions. After this has been done for all buckets i = 1, 2, . . . ,m− 1 of the
primary hash table, the hashing is complete.

Next we will show that the expected time complexity and space complex-
ity of Algorithm 4 is linear to the number of keys n.

Theorem 1. The expected time complexity of Algorithm 4 is O(n).

Proof. In phase 1 the prime p can be chosen in constant time. The first
repeat-until loop is executed until the size needed for the secondary hash
tables is less than 4n. Let q be the probability of this event. It has been
shown [8] that q > 1/2 if we use a universal hash function at each level.
Let X be a random variable that counts the number of repetitions required
for the condition of the loop to become true. Because X is geometrically
distributed, it follows that the expected value E(X) = 1/q < 2, so the loop
is executed on average less than 2 times. Inside the repeat-until loop the
time complexity of the two for loops and the evaluation of the sum is O(n),
so in all phase 1 takes O(n) time.

In phase 2 the second repeat-until loop is executed until no collisions
occur. In a similar way as in phase 1, we see that this loop is also executed
less than 2 times on average. We can assume that we can get the size of
the number of keys hashed to a primary hash table list in constant time. In
the two nested loops we hash every key k on the average less than 2 times.
Because there are n keys in total, it follows that the time required by phase 2
is O(n). Therefore the expected time complexity of Algorithm 4 is O(n).

Theorem 2. The space required by algorithm 4 is O(n).

Proof. The size of the primary hash table is n, and in phase 1 we need
additionally O(n) space for the keys in the lists. Phase 1 has ensured that
the space required for the secondary hash tables is less than 4n, so the space
required by Algorithm 4 is O(n).

The use of perfect hashing for implementing the transition function using
Algorithm 4 requires that we know beforehand the number of keys n that

9

we are going to hash. Because this is not known for each state of the Aho-
Corasick automaton until after executing Algorithm 2, we chose to build the
transition function first using another structure and then use this auxiliary
structure to build the perfect hash tables. We used the linked list implemen-
tation for this purpose for its simplicity.

3.2 Triple-array

The triple-array data structure [2] consists of three arrays base, next, and
check (see Figure 1). The idea is that when searching for g(s, a) for state
s and character a, we first retrieve the value base[s], and then inspect the
value check[base[s]+a], where character a is treated as an integer. If the value
check[base[s]+a]=s, then g(s, a) = next[base[s]+a], otherwise g(s, a) = fail.
The triple-array allows for fast indexing and saves space when compared to
an ordinary array implementation. The structure makes use of the fact that
the matrix of a transition function is sparse, so it is possible to overlap the
rows of the matrix to a single array. The amount of space saved depends on
how well we can fill the next and check arrays. We used a first-fit-decreasing
method suggested by Aoe [3] to build the arrays in our implementation. The
pseudocode is given in Algorithm 5.

base check next

a
s

s t

Figure 1: The triple-array structure with the three arrays base, next, and
check for g(s, a) = t.

The input for the algorithm is an array list that contains a list of outgoing
transitions for each state, and an array count that contains the number of
transitions going out from each state. The size of the count array is the
number of states n. The algorithm starts with sorting the states in decreasing
order by the number of outgoing transitions. First we construct an array
bucket that contains a list for each possible number of outgoing transitions:
bucket[4] would be a list of the states that have four outgoing transitions.
The bucket array is initialized in the first loop. The size of the bucket array

10

Algorithm 5 Algorithm for construction of the triple array by a first-fit-
decreasing method.

for s = 1 to n do
add state s to list bucket[count[s]];

end for
for p = m downto 1 do

for all s in bucket[p] do
overlap:
for all a in list[s] do

if check[base[s]+a] 6= −1 then
base[s] = base[s] + 1;
goto overlap;

end if
end for
for all a in list[s] do

check[base[s]+a] = s;
next[base[s]+a] = g(s, a);

end for
end for

end for

is the size of the alphabet m, because at most we can have a transition for
each character in the alphabet going out from a state. The entries in the
arrays base and next are assumed to be initialized to 0. The entries in the
check array are initialized to −1, because we use 0 for the initial state of the
automaton. The size of the next and check arrays is not known in advance,
because we cannot be sure on how well the transitions will overlap. In the
worst case the size could be n×m if no overlapping can be done. In practice
a smaller size can be chosen by empirical observations.

Next we start to search for values for the base array that determine the
starting indices in the next and check arrays. We iterate through all the
states in decreasing order of their out-degree. For each state we try to fit
the transitions to the next array starting from index 0 so that no collisions
occur, meaning that no two transitions map to the same next array index.
If a collision occurs, we abort and start over by increasing the corresponding
base array value by one, and iterating through all the transitions for the
state again. When an index is found that produces no collisions, the next
array is updated with the next state given by the transition, and the check
array is updated with the number of the state that we are processing. This
whole procedure is repeated until all the transitions for each state have been

11

successfully stored in the next array without collisions.
In the worst case the triple-array access time is O(1) and building time

is O(n2m + m2n) [3]. The average building time for triple-array is difficult
to analyze, because the average time for the first-fit-decreasing method de-
pends largely on how sparse the matrix is and how uniformly the values in
the matrix are spread. The building time of the arrays directly contributes
to the preprocessing time of the pattern matching automaton. Thus, the
actual performance of the triple array implementation is not obvious from
the theoretical worst-case analysis.

When constructing the triple-array, we need to have the transition func-
tion already built. The list implementation was used for this purpose as in
perfect hashing.

4 Implementation

The implementation was done using Java 2 SDK version 1.4.2. We decided
to use the Java Collections Framework libraries for most of the underlying
data structure implementations. The library offers fast and tested implemen-
tations of linked list, hash table, and balanced tree data structures. For list
implementation the class LinkedList was used. For implementing the hash
table, we used the HashMap class, which uses a bitwise shift-add-xor hash
function that is documented in a Sun Developer Network bug report [14].
For the tree implementation, the class SortedMap which implements a red-
black tree was used.

In all the implementations, the idea is to save the transition function rep-
resentation for each state of the automaton in a HashMap object. A lookup
of a value g(s, a) is done by getting the data structure (e.g. list) for state s
from the HashMap and executing the get operation on the underlying struc-
ture. Using an array could have been possible here, but we decided to use
HashMap because the number of states of the automaton is not known in
advance. Also this way we only have to store those states which have transi-
tions. In all other structures besides perfect hashing and triple-array we build
the transition function representation dynamically by adding each transition
to the automaton one at a time. Perfect hashing and triple-array transition
functions are built by first storing the transitions in a list and then using it
to build the final structure.

12

5 Experimental results

A freely available plain text version of the Bible [5] was used as a target text.
Each test was run 20 times, and outliers were removed from the samples by
using the Generalized ESD Test [12]. The number of outliers to search for
was set to 3 in the test. The final time was calculated as a mean of the
remaining values.

First, we measured the matching time with different sizes of the pattern
set. Pattern sets consisted of words randomly chosen from the target text.
The sizes of the sets were 10, 20, . . . , 100. These were assumed to be typ-
ical pattern sizes for natural language text searching applications. In the
matching process 500,000 characters of the target text were read. This was
found to be enough for the differences between the implementations to be
noticeable.

5.1 Run-time speed

Results measuring only the run-time speed are shown in Figure 2. Here we
see that list is clearly the slowest of the implementations. The next three,
red-black tree, hashing, and perfect hashing, are quite even. Triple-array and
array implementations are the fastest, with both performing similarly. The
relative order of the structures in this test is largely as expected based on their
time complexity. The speed of the implementations is largely independent of
the number of patterns. Interesting to note is that the triple-array is clearly
faster than perfect hashing, although both have O(1) worst-case access time.
The performance of the triple-array and array is about the same, in spite of
the more complex lookup operation of the triple-array.

5.2 Combined run-time and preprocessing speed

When we include the preprocessing time in the measurements (see Figure 3)
we see interesting behavior: the speed of the array implementation deteri-
orates as the number of patterns increases. This was found to be due to a
surprisingly slow preprocessing time for the array. This is examined further
later when we measure only the preprocessing time. The relative order of
the other structures remains the same.

In another test we measured the combined preprocessing and run-time
speed of the implementations while varying the target text length. The
number of patterns to search for was 30. We varied the length of the text
from 100,000 to 1,200,000 characters. Results are shown in Figure 4. Here
the slow preprocessing time of the array is also evident: on smaller sizes of

13

10 20 30 40 50 60 70 80 90 100
500

1000

1500

2000

2500

3000

3500

Number of patterns

T
im

e
(m

s)

Matching run−time speed

list
tree
hashing
perfect
triplearray
array

Figure 2: Matching speed excluding the preprocessing time with different
number of patterns.

10 20 30 40 50 60 70 80 90 100
500

1000

1500

2000

2500

3000

3500

Number of patterns

T
im

e
(m

s)

list
array
tree
hashing
perfect
triplearray

Figure 3: Combined run-time and preprocessing speed with different number
of patterns.

14

the target text the array is among the slowest structures, but as the target
text size grows the array becomes faster. This is because the relative share
of the preprocessing time of the total search time grows smaller when the
text size increases. On this experiment the array becomes the second fastest
implementation only after the target text size of about 700,000 characters.
The triple-array is faster than array on all tested lengths of the target text.

0 2 4 6 8 10 12

x 10
5

0

1000

2000

3000

4000

5000

6000

7000

Text length (chars)

T
im

e
(m

s)

The effect of text length to search time with preprocessing

list
tree
hashing
perfect
array
triplearray

Figure 4: Matching speed including the preprocessing time with different
lengths of the target text.

5.3 Preprocessing speed

Next we measured the preprocessing time only. Because the performance
in this test differs quite a lot between different structures, we present the
results as a table instead of a figure (see Table 1). Here we see that the
preprocessing time for list, red-black tree, hashing, and perfect hashing is
negligible, only a couple of milliseconds. The triple-array preprocessing time
seems to grow much faster than these four. However, it is evident that the
preprocessing time for array representation is significantly slower than any
other structure. It takes almost a second to preprocess the array for 100
patterns, when for other structures it takes only a couple of milliseconds, or
just under a hundred for triple-array. The slowness of the array preprocessing
was found to be due to the breadth-first search performed in the stage 2 of
the preprocessing. In this phase we need to go through all the transitions
that go out from a state. When the transition function is represented by an

15

Table 1: The preprocessing time (ms) for different representations.
#patterns list tree hash perf.h. triple-a. array

10 2 2 1 4 8 148
20 1 1 1 2 12 285
30 1 1 1 2 16 321
40 2 2 2 3 31 602
50 3 2 2 4 39 662
60 3 2 3 5 56 753
70 3 3 3 5 66 808
80 5 4 3 7 93 958
90 4 3 3 6 82 964
100 4 3 4 6 83 915

array, we have to examine each index of the array to check if there is indeed
a transition out for each character. When the alphabet size is 65536 and we
have to do this for each state of the automaton, this phase of preprocessing
is slow for array representation especially when the number of patterns is
large, which leads to many states for the automaton.

The triple-array preprocessing time is affected by the first-fit-decreasing
method that is used to build the structure, and seems to be approximately
quadratic to the number of patterns. The performance according to the
previous test was good enough for the pattern set sizes up to 100, but by
increasing the size of the pattern sets to 400, we see that the performance
of the triple-array preprocessing quickly deteriorates when compared with
hashing, for example (see Figure 5). We were able to make the triple-array
implementation significantly faster by using an array of int as the base-table
data type instead of a HashMap. This way we could use the basic data type of
int instead of Integer objects and thus avoid the overhead of creating many
small objects. Using this implementation, the time for preprocessing the 400
pattern set was cut to just over 400 ms compared to 1800 ms. This was a big
improvement, although the growth rate seemed to stay quadratic. However,
this change in implementation would have made the comparisons between
the other structures unfair, as they use a HashMap for storing the transitions
for each state. We chose to use the HashMap-based implementation in the
other tests, and in spite of this the triple-array performed consistently best
of the representations for the smaller pattern set sizes.

16

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of patterns

T
im

e
(m

s)

Preprocessing speed

triplearray
hashing

Figure 5: Preprocessing speed of triple-array and hashing for larger pattern
sizes.

5.4 Preprocessing speed with large pattern sets

In the final test, we examined further the differences between the preprocess-
ing time for those structures that were fastest in the first preprocessing time
test, namely list, hashing, perfect hashing, and red-black tree. In this test we
used special “pathological” pattern sets. The patterns were constructed so
that the first character was different for each pattern in a set, so for example
the 5-pattern set was

{‘‘(AAAA’’, ‘‘)AAAA’’, ‘‘*AAAA’’, ‘‘+AAAA’’, ‘‘,AAAA’’}.

The generation of the first letter of the patterns was started from Unicode
character 40. The intent of this set of patterns was to increase the number of
transitions out from the initial state in order to create a worst-case scenario.
We also used larger pattern sets that consisted of up to 4000 patterns. The
results are shown in Figure 6.

In this test we see that the preprocessing of perfect hashing and list is
slowed down considerably for large pattern sets. The similar behavior of list
and perfect hashing is due to the use of a list as an auxiliary structure used in
the construction of the perfect hash tables. Intuitively the list would appear
to have a preprocessing time of O(l) due to constant insertion time. How-
ever, the preprocessing time for list is surprisingly O(l2), where l is the total
number of non-fail transitions. This is because, as discussed in Section 2, in
phase 1 of the preprocessing it is necessary to check if transition for a char-

17

acter a is present before adding it to the transition function. Because this
lookup has to be done for each transition, the time to insert all l transitions
is O(l2). The performance of perfect hashing for large pattern sets could be
improved by using another auxiliary structure instead of a linked list that
has a faster preprocessing time. Hashing or a balanced tree could be used
for this purpose.

500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

Number of patterns

T
im

e
(m

s)

Preprocessing time.

perfect
list
hashing
tree

Figure 6: Preprocessing speed for pathological pattern sets with a large num-
ber of patterns.

Red-black tree and hashing performed best in this test, with red-black tree
slightly faster than hashing. This is interesting because the insertion time of
red-black tree is O(log n) and of hashing O(1). One thing that could affect
this is that the iteration of all hash table values takes time in proportion to
the size of the hash table, which is always larger than the number of keys in
the table. The iteration of a red-black tree can be done with a straightforward
O(n) tree traversal algorithm. In the preprocessing we do more iterating than
simple insert operations. The performance of both structures is consistently
good for patterns set sizes of several thousands.

6 Conclusions

We have examined several different transition function representations for
implementing an Aho-Corasick pattern matching automaton in Java using
Unicode alphabet. Besides the more traditional structures of array, linked
list, balanced tree, and hashing, we studied two more sophisticated ones:

18

perfect hashing and triple-array. We also proposed an algorithm that builds
the perfect hash tables in linear time and space.

In our experiments the triple-array performed best of the representations.
Also good alternatives were perfect hashing, ordinary hashing, and red-black
tree. We noticed that array implementation is not suitable for transition
function representation for Unicode alphabet. In addition to requiring a lot
of memory, the Aho-Corasick preprocessing using the array was found to be
very slow for a large number of patterns. Thus, for pattern set sizes of up to
100, triple-array structure can be recommended as it was fastest in our tests.

For larger pattern sets of a few hundred patterns, the preprocessing stage
for our implementation of the triple-array slowed down considerably. This
could be offset by using the basic data type of int instead of Integer ob-
jects in Java. However, it seems that the quadratic time performance of the
triple-array preprocessing is due to the first-fit-decreasing method used in
building the structure. For other structures besides array and triple-array,
the preprocessing time was only a couple milliseconds even for 400 patterns.
Therefore for pattern set sizes of a few hundred, red-black tree, hashing or
perfect hashing can be recommended if slow preprocessing time of the triple-
array affects the overall speed of the search.

We also used very large “pathological” pattern sets in order to study
if there were notable differences between the preprocessing times between
linked list, hashing, red-black tree, and perfect hashing structures. In this
test with the sizes of the pattern sets of several thousands, the difference be-
tween preprocessing times became evident: list and perfect hashing have
quadratic time performance, while hashing and red-black tree are much
faster. The quadratic preprocessing time of perfect hashing was due to using
linked list when building the structure, and could probably be improved by
using another faster auxiliary structure such as hashing in the implementa-
tion.

Two important requirements for the structures were discovered: lookup
speed and iteration speed of a data structure are important for fast pre-
processing, in addition to fast insertion time. Lookup speed is needed when
building the trie, and iteration speed while doing the breadth-first search. Of
course, lookup speed is also important in the search phase. These require-
ments seem to be important when using a large alphabet such as Unicode.

From our results it can also be deduced that the double-array structure
should be the fastest representation for up to 100 patterns, as Aoe has con-
cluded that double-array is slightly faster than triple-array. It would be inter-
esting to see if the preprocessing time for double-array slows down the same
way as triple-array with pattern sets of several hundreds. Testing which data
structure would be the best auxiliary structure for perfect hashing would also

19

be interesting. Also, perhaps other forms of perfect hashing would be better
suited to pattern matching applications, such as dynamic perfect hashing
techniques [9].

References

[1] A. Aho and M. Corasick. Efficient string matching: an aid to biblio-
graphic search. Communications of the ACM, 18(6):333–340, 1975.

[2] A. Aho, R. Sethi, and Ullman J. Compilers: Principles, Techniques and
Tools. Addison Wesley, 1986.

[3] J. Aoe. An efficient implementation of static string pattern match-
ing machines. IEEE Transactions on Software Engineering, 15(8):1010–
1016, 1989.

[4] S. Arikawa and T. Shinohara. A run-time efficient realization of Aho-
Corasick pattern matching machines. New Generation Computing,
2(2):171–186, 1984.

[5] Bill McGinnis Ministries. King James Bible, 2002. http://www.

patriot.net/users/bmcgin/ministries.html.

[6] Carter, J. and Wegman, M. Universal classes of hash functions. Journal
of Computer and System Sciences, 18(2):143–154, 1979.

[7] R. Cichelli. Minimal perfect hash functions made simple. Communica-
tions of the ACM, 23(1):17–19, 1980.

[8] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo-
rithms, Second Edition. The MIT Press, Cambridge (MA), USA, 2001.

[9] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide,
H. Rohnert, and R. Tarjan. Dynamic perfect hashing: Upper and lower
bounds. In IEEE Symposium on Foundations of Computer Science,
pages 524–531, 1988.

[10] M. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with
O(1) worst case access time. Journal of the Association for Computing
Machinery, 31(3):538–544, 1984.

[11] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. Cambridge University Press, New
York, USA, 1997.

20

[12] B. Iglewicz and D.C. Hoaglin. How To Detect and Handle Outliers.
ASQC Quality Press, Milwaukee (WI), USA, 1993.

[13] R. Sprungnoli. Perfect hashing functions: a single probe retrieving
method for static sets. Communications of the ACM, 20(11):841–850,
1977.

[14] Sun Developer Network. Bug 4669519, 2002. http://bugs.sun.com/

bugdatabase/view_bug.do?bug_id=4669519.

[15] R. Tarjan and Yao A. Storing a sparse table. Communications of the
ACM, 22(11):606–611, 1979.

21

