
One-Unambiguity of
Regular Expressions with

Numeric Occurrence Indicators

Pekka Kilpeläinen, Rauno Tuhkanen

Report A/2006/2

ISBN 951-781-272-8

ISSN 1795-9195

UNIVERSITY OF KUOPIO

Department of Computer Science

P.O.Box 1627, FI-70211 Kuopio, FINLAND

One-Unambiguity of Regular Expressions with

Numeric Occurrence Indicators ?

Pekka Kilpeläinen ∗, Rauno Tuhkanen

University of Kuopio, Department of Computer Science
P.O. Box 1627, FI-70211 Kuopio, Finland

Abstract

Regular expressions with numeric occurrence indicators are an extension of tradi-
tional regular expressions, which let the required minimum and the allowed maxi-
mum number of iterations of subexpressions be described with numeric parameters.
We consider the problem of testing whether a given regular expression E with
numeric occurrence indicators is 1-unambiguous or not. This condition means, in-
formally, that any prefix of any word accepted by expression E determines a unique
path of matching symbol positions in E. The main contribution of this paper is a
polynomial-time method for solving this problem, and a formal proof of its correct-
ness.

Key words: regular expression, numeric iteration, interval expression,
one-unambiguity, XML Schema, unique particle attribution

1 Introduction

Regular expressions with numeric occurrence indicators, or #REs for short,
are an extension of traditional regular expressions [1]. They let the required
minimum and the allowed maximum number of iterations of subexpressions be
described with numeric parameters. An expression Em..n denotes, intuitively,
the catenation of E with itself at least m and at most n times. #REs ap-
pear in a number of established practical variants of regular expressions [2–4].
Numeric iterations are a powerful shorthand notation, which allow some reg-
ular expressions be written much more compactly. Any expression E = Fm..n

can be written equivalently as E ′ = FF · · ·F (F |ε) · · · (F |ε), which consists of
m copies of expression F followed by n − m copies of (F |ε). If the numeric

? This work has been supported by the Academy of Finland (Grant no. 102270).
∗ Corresponding author. E-mail: Pekka.Kilpelainen@cs.uku.fi,
Tel: +358 17 165 761, Fax: +358 17 162 595

Preprint submitted to Elsevier Science 19 April 2006

bounds m and n are written in ordinary d-base representation with d ≥ 2,
expression E ′ is longer than E by a factor which is exponential with respect
to the length of E. (We follow the common but slightly imprecise practice of
using “exponential” as a synonym for “super-polynomial”.)

We consider the problem of testing whether a given regular expression E
with numeric occurrence indicators is 1-unambiguous or not. This condition
means, informally, that any prefix of any word w ∈ L(E) determines a unique
path of matching symbol positions in E. That is, no lookahead is required
to deterministically match the symbols of w against unique symbol positions
in E, while processing the symbols of w one at a time from left to right.
The main contribution of this paper is a polynomial-time method for solving
this problem, and a formal proof of its correctness. We are not aware that
correct polynomial-time algorithms for testing the one-unambiguity of #REs
had been published before.

We define the syntax and semantics of regular expressions with numeric oc-
currence indicators, unambiguity, and related basic concepts more precisely
in Section 2. One-unambiguity appears as a validity constraint of expressions
used in document schema languages such as SGML and XML DTDs (doc-
ument type definitions) and XML Schema. Especially, XML Schema both
includes numeric occurrence indicators and requires 1-unambiguity of expres-
sions. We discuss the theoretical and practical motivation of the 1-unambiguity
problem more in Section 3. We also discuss previously published solutions that
we are aware of; these solutions either require exponential amounts of resources
or produce erroneous results.

As indicated by the failures of earlier attempts, efficient testing of unambi-
guity of #REs requires novel methods. In Section 4 we introduce a semantic
flexibility condition for numeric iterations. This condition has a central role in
unambiguity caused by numeric iterations. In Section 5 we develop and prove
formally correct a syntactic method, which allows us to recognize flexible it-
erations of an expression in linear time. Based on the flexibility of iterations
we define Follow relations for #REs in Section 6, and, based on the Follow
relations, introduce and prove formally correct a polynomial-time method for
testing the unambiguity of expressions. The last section is a conclusion.

2 Preliminaries

Regular expressions describe languages, which are subsets of Σ∗ for a given
non-empty set of symbols Σ called the alphabet. As usual, we define the closure
L∗ of a language L with L∗ =

⋃
i≥0 Li, where L0 = {ε} and Li+1 = LLi; here

ε denotes the empty word, and catenation of languages L1 and L2 is defined
by L1L2 = {uv | u ∈ L1, v ∈ L2}. The notation L+ is also used in its standard
meaning L+ =

⋃
i≥1 Li. Thus, Σ∗ denotes the set of all words that can be

2

formed using symbols of alphabet Σ, and Σ+ is the same set excluding the
zero-length empty word.

We use integer superscripts on symbols and words to denote their repetitions
in words. For example, a3bc3 denotes the word aaabccc, and (a2b)2 denotes the
word aabaab.

Regular expressions are built of symbols ∅, ε, and a ∈ Σ connected together
using sequential catenation, infix operator |, postfix operator ∗, and parenthe-
ses for grouping. The language L(E) described by a regular expression E is
defined inductively as follows:

L(∅) = ∅; L(ε) = {ε};

L(a) = {a} for a ∈ Σ; L(FG) = L(F)L(G);

L(F |G) = L(F) ∪ L(G); L(F ∗) = L(F)∗ .

Regular expressions with numeric occurrence indicators (#REs) use, in addi-
tion to the above standard constructs, iterative expressions of the form Fm..n,
where m and n are non-negative integers satisfying m ≤ n. For an iteration
Fm..n we call expression F the body, integer m the minimum bound, and integer
n the maximum bound of the iteration. The semantics of numeric occurrence
indicators is defined as follows:

L(Fm..n) =
n⋃

i=m

L(F)i

= {v1 . . . vi | m ≤ i ≤ n; v1, . . . , vi ∈ L(F)} .

That is, L(Fm..n) consists of words that result by concatenating at least m and
at most n words of L(F). We use F n as a shorthand notation for an iteration
F n..n whose minimum and maximum bound are both n. In the sequel we often
call regular expressions with numeric occurrence indicators simply expressions.

For simplicity we exclude the empty set symbol ∅ from consideration in the
expressions. It is straightforward to simplify any expression into an equivalent
form that either does not include ∅ or consists of ∅ alone. (Such expressions
have been called trim, e.g., by Brüggemann-Klein and Wood [5].) Thus the
symbol ∅ is only needed for expressing the empty language, which is an unin-
teresting special case.

Also, we restrict to numeric iterations Fm..n whose maximum bound n is at
least two, since the other cases can be represented by an equivalent non-
iterative form as follows:

F 0..0 ≡ ε, F 0..1 ≡ (F |ε), and F 1..1 ≡ F

As usual, we use F? as a shorthand notation for the expression (F |ε).

3

Finally, we allow the maximum bound of an iteration to be unbounded, de-
noted by ∞, and define its semantics as follows:

L(Fm..∞) =
⋃

i≥m

L(F)i

= {v1 . . . vi | i ≥ m; v1, . . . , vi ∈ L(F)} .

In the sequel we restrict to expressions without the Kleene iteration F ∗. This
can be done without loss of generality, since L(F ∗) = L(F 0..∞).

Unless stated otherwise, we always consider marked expressions, where sym-
bol occurrences are treated as unique positions. That is, any occurrence of a
symbol a ∈ Σ in an expression is represented as a position ai, where i is an in-
teger subscript such that ai occurs exactly once in the marked expression. We
denote by Π = {ai | a ∈ Σ, i ∈ N} the marked alphabet for alphabet Σ, and by
()\ an unmarking operation which removes the subscripts of marked symbols.
For example, E = a1(a2|b1)

5..6 is a marked expression, where symbol a occurs
at positions a1 and a2. The unmarked version is then (E)\ = a(a|b)5..6. We
denote the set of positions of a marked expression E by Pos(E). For example,
Pos(a1(a2|b1)

5..6) = {a1, a2, b1}. We sometimes omit subscripts from unique
occurrences of symbols for simplicity. For example, we may write a1(a2|b)5..6

to denote the same marked expression as above.

We follow Brüggemann-Klein and Wood in their treatment of unambiguity:

Definition 2.1 [5] A marked expression E is 1-ambiguous if there are two
different positions x, y ∈ Pos(E) and some words u, v, w ∈ Pos(E)∗ such that

uxv ∈ L(E), uyw ∈ L(E), and (x)\ = (y)\ .

If an expression is not 1-ambiguous, it is 1-unambiguous.

That is, an expression is 1-ambiguous iff there is some input word such that
after matching its prefix against a sequence of positions u, the next input
symbol could be matched by two different occurrences x and y of that sym-
bol. It may be helpful to think words accepted by a marked expression, and
their subwords (such as u, v and w above), as paths of positions through the
expression. For shortness, we refer to 1-ambiguity and 1-unambiguity using
the simpler terms ambiguity and unambiguity instead.

Example 2.2 The expression E1 = a1?a2 is ambiguous, since an initial sym-
bol a of an input word could be matched either by position a1 or a2. The equiv-
alent expression E2 = (a1)

1..2, on the other hand, is trivially unambiguous,
since it contains only a single position.

The expression E3 = (a2..3|x1)
3x2 is seen ambiguous by observing that a6x2 ∈

L(E3) and a6x1x2 ∈ L(E3). Informally this means that the prefix a6x of an
input word could be matched either (1) as three instances of a2..3 followed by

4

Table 1
Inductive rules for the First and Last sets of an expression E

E First(E) Last(E)

ε ∅ ∅

x ∈ Π {x} {x}

F |G First(F) ∪ First(G) Last(F) ∪ Last(G)

Fm..n First(F) Last(F)

FG First(F) if ε 6∈ L(F) Last(G) if ε 6∈ L(G)

First(F) ∪ First(G) if ε ∈ L(F) Last(G) ∪ Last(F) if ε ∈ L(G)

symbol x matched by position x2; or (2) as three instances of (a2..3|x1), the last
of which is symbol x matched by position x1. On the other hand, a rather simi-
lar expression E4 = (a2..3|x1)

2x2 is unambiguous. This can be seen by observing
that there are no two words that would satisfy the conditions of Definition 2.1
in the language L(E4) = {a4x2, a

5x2, a
6x2, a

2x1x2, a
3x1x2, x1x1x2}.

We include the expression itself in the set of its subexpressions, together with
its proper subexpressions, defined in the usual way.

Lemma 2.3 A marked expression E is ambiguous if and only if some of its
subexpressions is ambiguous.

Proof. If none of the subexpressions is ambiguous, then E is not ambiguous
(as one of the subexpressions). On the other hand, if any of the subexpressions
is ambiguous, then the entire expression is seen ambiguous as a consequence
of the next Lemma 2.4. 2

Lemma 2.4 Let E be a trim marked expression. If α ∈ L(F) and β ∈ L(F)
for any subexpression F of E, then

uαv ∈ L(E) and uβv ∈ L(E)

for some words u, v ∈ Pos(E)∗.

Proof. A straightforward induction. 2

We need to refer to the dual sets of positions First(F) and Last(F) that re-
spectively either start or end an accepting path through an expression F [6,7].
They are defined in the usual way:

First(F) = {x ∈ Pos(F) | xw ∈ L(F) for some w ∈ Pos(F)∗}
Last(F) = {x ∈ Pos(F) | wx ∈ L(F) for some w ∈ Pos(F)∗}

Inductive rules for the First and Last sets of a regular expression (e.g., [8])
extended with the rules for numeric iterations are shown in Table 1. Based
on the inductive definition, the First and Last sets can be computed for the

5

subexpressions of an expression via a bottom-up traversal of its expression
tree. Since the sets of disjoint subexpressions are disjoint, their unions can be
implemented by simple operations on linked lists. Therefore an implicit rep-
resentation of the sets can be computed in linear total time, by implementing
each union in constant time by setting a few links to point to the lists of the
immediate subexpressions. Alternatively we can compute an explicit First and
Last list for each subexpression in quadratic total time, simply by copying the
positions from the corresponding lists of the immediate subexpressions.

Observation 2.5 Let F be a subexpression of a marked expression G. It can
be seen by simple induction that if there is any position x ∈ Pos(F)∩First(G),
then First(F) ⊆ First(G). The corresponding result holds for the Last sets, too:
the existence of any x ∈ Pos(F) ∩ Last(G) implies that Last(F) ⊆ Last(G).

3 Motivation and related work

Regular expressions with numeric occurrence indicators appear in a number
of established variants of regular expressions, such as POSIX “interval expres-
sions” [2, Chap.9], XML Schema content models with attributes minOccurs

and maxOccurs [4], and Perl patterns [3,9]. In contrast to the relatively wide
adoption of numeric occurrence indicators in practical implementations of reg-
ular expressions, little has been written about them in the theoretical litera-
ture. Standard literature on regular expression implementation [10–13] seems
to ignore numeric occurrence indicators completely.

A special case of numeric iterations called squaring has been studied before.
A squaring operator applied to subexpression F is equivalent to numeric it-
eration (F)2. Meyer and Stockmeyer have shown that testing the equivalence
of regular expressions with squaring requires exponential space [14]. The ex-
pressions used in the proof of this result are ambiguous. More recently, the
complexity of decision problems for restricted forms of regular expressions that
arise in practical XML schemas have been considered by Martens, Neven, and
Schwentick [15], but they do not consider numeric iterations. The problems of
inclusion, equivalence and intersection between expressions are seen to remain
hard in most of the considered restricted cases, too. For one-unambiguous reg-
ular expressions we can compute equivalent deterministic automata in linear
time [8], and the inclusion of DFAs can be tested in polynomial time apply-
ing the well-known cross-product construction. (See, e.g., [16,17].) Therefore
the inclusion and consequently also equivalence of one-unambiguous regular
expressions is solvable in polynomial time. We have shown earlier that mem-
bership of a word in the language of a #RE can be tested in polynomial
time [18]. On the other hand, testing the inclusion and the non-emptiness of
intersection between languages represented by two #REs are NP-hard prob-
lems even if the expressions are 1-unambiguous [18,19]. The complexity of
testing the equivalence of two 1-unambiguous #REs appears to be an open

6

problem.

A regular language is 1-unambiguous if it can be described by some 1-unam-
biguous regular expression. Brüggemann-Klein and Wood have studied the
1-unambiguity of regular languages [5]. They have shown that 1-unambiguous
languages form a proper subclass of regular languages; given a Kleene charac-
terization for 1-unambiguous languages; and provided a decision procedure for
testing the 1-unambiguity of a given regular language by inspecting structural
properties of its minimal accepting automaton.

Various document schema languages are basically grammatical formalisms,
which usually describe allowed contents of document elements using variants
of regular expressions. For example, XML Schema [4] realizes iteration through
numeric attributes minOccurs and maxOccurs attached to content-describing
elements such as sequence, choice, and element, which essentially corre-
sponds to #REs over the alphabet of element tag-names. One-unambiguity
was introduced to this application area by the SGML standard, which calls
the condition simply “unambiguity” [20]. XML [21] is a simplified offspring
of SGML, which was developed by the World Wide Web Consortium (W3C)
to support the delivery of document data over the Internet. XML inherited
the unambiguity constraint of SGML as “determinism”. More recently, XML
Schema adopted the same, or at least a similar constraint by the name “unique
particle attribution”.

From the point of view of language theory, XML Schema can be characterized
as an XML-based language to express single-type tree grammars [22]. Web
services are an active application area of XML Schema, where schemas are used
as a typing mechanism to describe the format of XML messages interchanged
between clients and servers [23,24]. XML Schema has also been criticized, for
example of its overwhelming complexity (see, e.g., [25,26]), which probably
hinders its wide adoption.

The XML Schema Recommendation [4,27] does not give precise formulation
for unambiguity stating that “concise expression of this constraint is diffi-
cult”. Instead, the non-normative Appendix H of the Recommendation out-
lines a complex sequence of operations for testing unambiguity, which includes
unfolding numeric occurrence indicators, translating the expression into an
automaton with epsilon transitions, and determinizing the automaton. The
problem with this explanation, in addition to its procedural nature, is that a
direct implementation is inherently exponential. Both the unfolding of numeric
occurrence indicators and the determinization can lead to automata of expo-
nential size, which makes the testing of unambiguity based on the procedure
sketched in Appendix H infeasible [26].

We assume that the same notion of 1-unambiguity that has been used to model
and to study the unambiguity of SGML and XML content models also applies
to XML Schema [28,29]. The XML Schema Recommendation is verbal and

7

verbose, which makes it difficult to verify whether any exact formalization of
XML Schema captures the intentions of its authors. W3C did initiate work on
the formal description of XML Schema, but the description has remained a
draft only. Especially the unambiguity constraint has been left unspecified in
the draft formal description of XML Schema [30]. Brown et al. have published
an attempt to formalize some core ideas of XML Schema [31], but they refrain
from modeling the unambiguity restriction of content models in their article,
too.

Restricting to unambiguous expressions and being able to test the unambiguity
of expressions is not a main goal by itself. Unambiguity is useful for efficient
implementation of #REs, since it allows them to be efficiently matched by a
hierarchy of deterministic automata [32]. Thus an efficient test for unambiguity
is a precondition for efficient validation of documents using XML Schema. Also
string pattern matching using #REs, say, for searching textual files, could be
implemented more efficiently in those cases where the expression is recognized
to be unambiguous.

Our work is related to, and inspired by the study of unambiguity of extended
regular expressions in SGML grammars by Brüggemann-Klein [8,28,33]. SGML
content model expressions do not include numeric iterations, but the challenge
in Brüggemann-Klein’s study [33] was the treatment of the ’&’ operator, which
is used in SGML to describe permutations of subexpressions. A property that
is common to marked SGML content model expressions and marked #REs is
that both can denote languages that are not local [34]. This means, informally,
that the possible continuations of a prefix of a word accepted by an expression
are not determined by the last matching position alone, but may depend on
the entire prefix instead.

XML Schema includes also an all construct, which is a strongly restricted
version of the SGML ’&’ operator: an all may not be combined with any other
operators (sequence, choice, or iterations of itself), and it can be applied to
non-iterative elements only. Thus an XML Schema all is essentially equivalent
to an SGML content model expression

a1&a2& · · ·&am&b1?&b2?& · · ·&bn? ,

where a1, . . . , am and b1, . . . , bn are tag-names of required and optional sub-
elements, respectively. Such an expression is unambiguous if and only if all
these tag-names are pairwise disjoint.

A few authors have published methods for testing the unique particle at-
tribution property of XML Schema content models, which is essentially the
1-unambiguity problem of #REs, but these solutions are either exponential
or erroneous. We discuss these attempts below.

8

3.1 Alternative attempts

Thompson and Tobin [35] have described algorithms for testing the unique
particle attribution property (UPA) of XML Schema content models. Their
algorithms implement the procedure sketched in Appendix H of the XML
Schema Recommendation rather directly, and thus require in the worst case
exponential time and space with respect to the length of the content model
expression.

Fuchs and Brown have published a method for testing the UPA constraint,
which is based on computing and analyzing first and follow sets [26]. Thus
their approach is quite close to ours. However, the algorithm of Fuchs and
Brown does not recognize the flexibility of iterations (see Section 4), and this
makes their method incorrect. When computing follow sets for the positions
of an iteration F = Gm..n, Fuchs and Brown include the positions of First(G)
in this computation only if m < n or if the body G of the iteration is nullable.
(We include them also in other cases of flexible iterations; see Definition 6.1.)

As an example, consider the expression E3 = (a2..3|x1)
3x2, which we saw

ambiguous in Example 2.2. Consider first its subexpression F1 = a2..3. Ac-
cording to Fuchs and Brown’s definition, the set First(a) = {a} is included
in computing follow sets for the positions of subexpression F1, and thus
follow(a) = {a, x2}. Then consider the larger subexpression F2 = (a2..3|x1)

3.
Since the bounds of this iteration are equal and its body is not nullable, the
set First(F2) = {a, x1} is not used in its follow analysis, and thus follow(x1)
consists of position x2 alone.

Fuchs and Brown also define for each subexpression F of E a confusion set,
denoted by confusion(F), which consists of those positions of F which belong
in the follow set of some position in Last(F). The idea is that these posi-
tions of F could be in conflict with some other positions of E. For example,
confusion(a) = {a} in the above subexpression F1 of expression E3.

Fuchs and Brown’s UPA test [26, p. 5] for an iteration Gm..n consists of test-
ing the body G of the iteration recursively, and checking that First(G) ∩
confusion(G) = ∅. This test as such would deem the subexpression F1 = a2..3

ambiguous, since First(a)∩confusion(a) = {a}. This outcome is clearly wrong,
since a single-position expression like F1 is trivially unambiguous. The in-
tended correct meaning of this condition is, obviously, that there are no two
different positions with the same underlying symbol in First(G)∩confusion(G).
Assuming this minor correction, the lack of observing the flexibility of it-
erations remains as a more severe flaw. Since the set First(F2) is not in-
cluded in the computation of the follow sets for the positions in subexpression
F2 = (a2..3|x1)

3, the position x1 is not recorded in any follow set. Thus the
conflict between positions x1 and x2, which makes expression E3 ambiguous,
remains unnoticed.

9

Fuchs and Brown’s UPA algorithm tries to check the unambiguity of expres-
sions extended with the SGML ‘&’ operator, too. Their definition of follow
sets for ‘&’-expressions seems to differ from the corresponding definition of
follow− sets by Brüggemann-Klein [33]. We suspect the correctness of their
algorithm also with respect to this extension.

Fuchs and Brown also sketch a rather complicated algorithm for testing for
given expressions F and G (with numeric iterations and SGML ‘&’ operators)
whether one of them subsumes the other, that is, whether L(F) ⊆ L(G)
holds. They state that the complexity of their algorithm is exponential with
respect to the depth of nested iterations in the expressions only. This claim
seems to contradict our proof of the NP-hardness of testing the subsumption
between two unambiguous #REs [19], which uses expressions with only two
nested iterations. Anyhow, we feel that more extensive analysis of Fuchs and
Brown’s work [26] is beyond the scope of this paper.

Sperberg-McQueen has recently described applications of so called Brzozowski
derivatives to XML Schema processing, including the testing of unique particle
attribution [36]. The (Brzozowski) derivative of an expression E by symbol
a ∈ Σ, denoted by Da(E), is an expression such that L(Da(E)) = {w ∈ Σ∗ |
aw ∈ L(E)} [37]. That is, the derivative Da(E) accepts any continuations
of an initial a in the words accepted by expression E. Derivatives can be
computed by simple symbol manipulation, and they lead to intuitive and
elegant algorithms for several problems related to regular expressions and
their extensions. For example, a word w = a1 . . . an belongs to L(E) if and
only if the expression Dw(E) is nullable, where the word-derivative Dw(E) is
obtained by successively deriving E by the symbols a1, . . . , an of the word w.

Sperberg-McQueen’s idea is that an expression E is 1-ambiguous if and only
if some word-derivative of E has two different occurrences of any symbol in
its First set. (Actually he calls 1-unambiguity “weak determinism”, but the
meaning is the same.) Since the number of characteristic derivatives, that is,
equivalence classes of derivatives of an expression is finite [37], the idea can
be implemented as a terminating algorithm.

The above idea is intuitively appealing but, as such, slightly erroneous. For
example, consider the expression E = (a?b?)2, which is clearly unambiguous.
Its derivative by symbol a is now Da(E) = b?(a?b?), which is ambiguous by
containing two initial occurrences of symbol b. The idea could possibly be
corrected as follows: (1) Start from a marking E ′ of the original expression;
for example, E ′ = (a1?b1?)

2. (2) Define derivatives of marked symbols x in
the obvious way, that is, Da(x) = ε if (x)\ = a and ∅ otherwise. (3) Deem
the expression ambiguous if and only if some characteristic derivative of E ′

has two different marked symbols with the same underlying alphabet symbol
in its First set. For example, in this case Da(E

′) = b1?(a1?b1?) would not be
considered as an indication of ambiguity, since the two competing occurrences
of b originate from the same position b1 of the original expression.

10

The main bottleneck of the derivative-based approach is that the number
of characteristic derivatives can be large, that is, exponential in the worst
case. This is inherent, since the characteristic derivatives are in one-to-one
correspondence with the states of the minimal DFA for the expression [37].
As a simple example, the expression E = a1..106

has the following 1,000,002
characteristic derivatives:

E, a0..106−1, a0..106−2, . . . , a0..1, ε, and ∅.

Sperberg-McQueen tries to reduce the large number of derivatives for numeric
iterations by initially reducing their repetition bounds. His initial transfor-
mation replaces any subexpression F n with n > 2 by iteration F 2, and any
subexpression Fm..n with bounds 1 ≤ m < n by iteration F 1..2. Unfortunately
his intuition that this transformation would not affect the ambiguity of the
expression is wrong. For example, we saw the expression E4 = (a2..3|x1)

2x2

unambiguous in Example 2.2. On the other hand, its modified version E ′
4 =

(a1..2|x1)
2x2 transformed according to Sperberg-McQueen’s suggestion is am-

biguous, since it accepts both words aax1x2 and aax2. Nevertheless, it might
be possible to refine the derivative-based approach into an efficient algorithm
for testing the unambiguity of expressions, but this would require some careful
consideration.

4 Flexible iterations

In this section we introduce the concept of flexible iterations, which plays a
central role in analyzing the unambiguity of #REs. A flexible iteration is,
intuitively, an iteration that can accept some input without reaching the max-
imum bound of the iteration. Such flexibility can cause ambiguity of expres-
sions, since in this case further input could be matched either by re-iterating
the body of the iteration, or by some other part of the expression. In the sim-
plest cases the flexibility of iterations is quite obvious, but as we’ll see, it can
also result from rather subtle interaction of minimum and maximum bounds
in the expression.

Example 4.1 Consider the iteration F1 = (a2..3)2. Its body a2..3 is obviously
flexible in the intuitive sense, since it accepts the word aa as two iterations of
its body, while the maximum bound is three. This flexibility would make, for
example, an expression like (a1)

2..3a2 ambiguous: the third symbol of input aaa
could be matched either by a1 or a2. On the other hand, the full expression F1

is intuitively not flexible, since each of the words a4, a5 and a6 accepted by
F1 requires exactly two iterations of its body a2..3. A quite similar expression
F2 = (a2..3)3 again is flexible: it accepts the word a6, which can also be matched
by iterating its body only twice. For the same reason also the expression F3 =
(a2..3|x1)

3 is flexible. The flexibility of F3 is the cause to the ambiguity of

11

expression E3 = (a2..3|x1)
3x2, which was considered in Example 2.2.

We formalize the intuitive concept of (local) flexibility as follows:

Definition 4.2 An iterative expression F = Gm..n is (locally) flexible, if there
is some word w ∈ L(F) ∩ L(G)k for some k < n. We call such a word w a
witness to the flexibility of F .

That is, a witness to the flexibility of F = Gm..n is a word which can simulta-
neously be accepted by F and matched by less than n iterations of its body
G. We treat ∞ greater than any integer, which means that expressions of the
form Gm..∞ are flexible.

Notice that the flexibility of F = Gm..n implies that for some words w ∈ L(F)
and v ∈ L(G) also wvl ∈ L(F) for some l > 0. The converse does not hold,
though. As an example, consider again the expression F1 = (a2..3)2. Now
a4 ∈ L(F1), a2 ∈ L(a2..3) and a4a2 ∈ L(F1), but as discussed in Example 4.1,
expression F1 is not flexible.

Some special cases of flexible iterations are easy to recognize. As the first case
we mention iterations with differing maximum and minimum bounds.

Observation 4.3 Any iteration F = Gm..n with m < n is flexible.

Proof. The word vm for any v ∈ L(G) is a witness to the flexibility of F . 2

Nullable iterations are also immediately seen flexible:

Observation 4.4 An iteration F = Gm..n with ε ∈ L(G) is flexible.

Proof. The word ε ∈ L(F) ∩ L(G)n−1 is a witness to the flexibility of F . 2

Flexibility is not just a local property of expressions: An iteration which is
not locally flexible can yet possess flexible behavior in the context of a larger
expression. As an example, consider the expression E = ((a2..3)2)2, whose body
F1 = (a2..3)2 was stated (locally) non-flexible in Example 4.1. Now E accepts
the word a8, which can be treated either as two full iterations of F1 (each
for a4), or as a single iteration of F1 (for a6) followed by one iteration of its
body a2..3 (to match a2). We say now that F1 is flexible in E. Also this kind
of flexibility can cause ambiguity in expressions. As an example consider the
below extension of the above expression E:

E5 = ((a2..3|x1)
2)2x2 .

Now E5 is ambiguous since it accepts both the words a8x2 and a8x1x2; that
is, the last symbol of the prefix a8x of an input word could be matched al-
ternatively by position x1 or by position x2. The ambiguity is caused by the
flexibility of the subexpression (a2..3|x1)

2 in E5. We define such flexibility of
an iteration in an expression as follows:

12

Definition 4.5 Let E be a marked #RE. An iterative subexpression F =
Gm..n of E is flexible in E if there is some word uws ∈ L(E) with w ∈ L(F)l

for some l ≥ 1 such that w ∈ L(F)l′L(G)k for some l′ < l and k < n. We call
such a word w a witness to the flexibility of F in E.

That is, a witness to the flexibility of F = Gm..n in E is a subword w of some
word accepted by E, such that w can be matched by a number of iterations
of F in such a way that the last iteration isn’t “full” (k < n). Returning to
the above example, the word a8 is a witness to the flexibility of F = (a2..3|x1)

2

in expression E5 = ((a2..3|x1)
2)2x2, since a8x2 ∈ L(E5), a8 ∈ L(F)2, and

a8 ∈ L(F)1L((a2..3|x1))
1 (by treating it as a6a2).

Non-local flexibility is related to iterations whose repeated occurrences are
sufficient to satisfy the body of an enclosing iteration. As an example, con-
sider the expression F = ((a2..3|x)2b?)2. Now two occurrences of the iteration
(a2..3|x)2 constitute a single occurrence of the enclosing iteration F . Similarly,
four occurrences of the iteration a2..3 constitute a single occurrence of F . In
this case we say that the sub-iterations are factors of the larger one. We define
this relationship in general as follows: Let F be a subexpression of a marked
expression G. If both First(F) ⊆ First(G) and Last(F) ⊆ Last(G) hold, ex-
pression F is a factor of expression G. If F is a factor of G, we say that G is
a multiple of F . Notice that each expression is both a factor and a multiple
of itself. If F is a proper subexpression and a factor of G, we say that F is a
proper factor of G, and that G is a proper multiple of F .

The next lemma states that the flexibility in an expression is caused only by
the flexibility of the subexpression in some iterative multiple of it.

Lemma 4.6 Let F be an iterative subexpression of a marked expression E.
Then F is flexible in E if and only if F is flexible in some multiple of F which
is also an iterative subexpression of E.

Proof. If F is flexible in a subexpression of E, then Lemma 2.4 implies that it
is flexible in E, too.

Let then a word w be a witness to the flexibility of F in E. If w = ε, expres-
sion F is by Observation 4.4 flexible in itself, and F is its own (non-proper)
multiple. Assume then that w ∈ Pos(F)+, and show by induction that w is a
witness to the flexibility of F in a multiple of F which is an iterative subex-
pression of E. We discuss the inductive step only in the case that E = Hm..n

and E is not a multiple of F ; the other cases are straightforward. Now we
must have that uws ∈ L(H) for some words u, s ∈ Pos(H)∗, since otherwise
Observation 2.5 implies that E is a multiple of F . Thus w is a witness to the
flexibility of F in H, and the claim holds by induction. 2

13

5 Recognizing flexibility

We stated in Section 4 that an iteration E = Fm..n is flexible if m < n,
or if the body of the iteration is nullable, that is, if ε ∈ L(F). The first
condition is trivial. The second one isn’t problematic either, since all nullable
subexpressions can be found by a straightforward linear-time traversal of the
expression tree. Next we consider recognizing flexibility in the remaining case,
where the bounds of the iteration are equal and the expression is not nullable.

We define for non-nullable #REs a numeric flexibility value as the main tool
for testing whether an iteration is flexible or not. This value is, intuitively,
a measure of “stretchability” or “squeezability”, which indicates the largest
proportional difference between the possible numbers of times that the expres-
sion can be satisfied by an input word. As an example consider the expression
E = (a|b2..3)2, which accepts the language

L(E) = {aa, abb, ab3, bba, b3a, b4, b5, b6} .

When recognizing an input word like w = b12 as a number of occurrences of
E, we could “squeeze” the subwords matched by E from b6 to b4, giving that
both w ∈ L(E)2 and w ∈ L(E)3. This ratio 6/4 = 3/2 is called the flexibility
of E, which we formalize below.

Definition 5.1 Let F be a non-nullable marked #RE. The numeric flexibility
fl(F) of expression F is defined inductively as follows:

(1) If F = x for x ∈ Π, then fl(F) = 1;
(2) If F = G|H, then fl(F) = max{fl(G), f l(H)};

(3) If F = GH, then fl(F) =


fl(G) if ε ∈ L(H),

fl(H) if ε ∈ L(G), and

1 otherwise;

(4) If F = Gm..n, then fl(F) = (n/m)× fl(G).

In the last case, if n = ∞ or fl(G) = ∞, we define that fl(F) = ∞. For the
second case we define the maximum of ∞ and anything else to be ∞. So, the
flexibility is either ∞ or a rational number greater than or equal to one.

Central properties of flexibility values are given below. As preparation for
them we present a lemma that states how many times an iteration F = Gm..n

can be satisfied by a word that satisfies its body G a given number of times:

Lemma 5.2 Let F = Gm..n be a #RE with m 6= 0 and n 6= ∞.

(a) If w ∈ L(G)i, then w ∈ L(F)j for each j = di/ne , . . . , bi/mc.
(b) If w ∈ L(G)i for each i = l, . . . , h, then w ∈ L(F)j for each j =
dl/ne , . . . , bh/mc.

14

Proof. (a) Assume that w ∈ L(G)i. Let j ∈ {di/ne , . . . , bi/mc}, which requires
that jm ≤ i ≤ jn. To see that w ∈ L(F)j we need to show that w = w1 . . . wj

such that wk ∈ L(Gm..n) for each k = 1, . . . , j. This holds if

i = k1 + k2 + · · ·+ kj

for some k1, . . . , kj ∈ {m, . . . , n}. This can be shown to hold for any i ∈
{jm, . . . , jn} by an easy induction on n−m.

(b) Assume that w ∈ L(G)i for each i = l, . . . , h. Then by item (a) we have
that w ∈ L(F)j for each j ∈ ⋃h

i=l{di/ne , . . . , bi/mc}. We prove that this union
equals the single range {dl/ne , . . . , bh/mc} by induction on the length of the
range l, . . . , h. For h = l this clearly holds. By the inductive assumption

h+1⋃
i=l

{di/ne , . . . , bi/mc} =

{dl/ne , . . . , bh/mc} ∪ {d(h + 1)/ne , . . . , b(h + 1)/mc} . (1)

Now d(h + 1)/ne ≤ d(h + 1)/me = bh/mc + 1, which means that there is no
gap between the two ranges in equation (1), and thus their union is

{dl/ne , . . . , b(h + 1)/mc} . 2

Notice that the ranges of j for which w ∈ L(F)j can be empty in Lemma 5.2.
For example, consider the expression F = (a1..2)4..5 and its body G = a1..2.
The word a8 ∈ L(G)i for each i = 4, . . . , 8, and it can be accepted as
one or two occurrences of expression F . The corresponding range {1, 2} =
{d4/5e , . . . , b8/4c} is composed of subranges according to the above proof as
follows:

8⋃
i=4

{di/5e , . . . , bi/4c} =

{1, . . . , 1} ∪ {1, . . . , 1} ∪ {2, . . . , 1} ∪ {2, . . . , 1} ∪ {2, . . . , 2} =

{1} ∪ {1} ∪ ∅ ∪ ∅ ∪ {2}

As the first main result (Corollary 5.4 below) we prove that an infinite flexibil-
ity value is a sufficient condition for the flexibility of an iteration. This result
follows from the next Lemma 5.3:

Lemma 5.3 Let F be a non-nullable marked #RE. If fl(F) = ∞, there is a
word v ∈ L(F) such that vk ∈ L(F)i for any k ∈ N and each i = 1, . . . , k.

Proof. Assume that fl(F) = ∞, and prove the claim by induction on the
structure of F . Consider first the case that F = Gm..n. If n = ∞, let v = um for
any u ∈ L(G). Then it is easy to see by induction on k that vk ∈ L(F)i for each
i = 1, . . . , k. If n 6= ∞, then fl(G) = ∞. By the inductive assumption there is a

15

word v ∈ L(G) such that vkm ∈ L(G)i for each i = 1, . . . , km. Now vm ∈ L(F),
and (vm)k ∈ L(F)j (by Lemma 5.2) for each j = d1/ne , . . . , b(mk)/mc =
1, . . . , k.

In the cases F = G|H and F = GH assume without loss of generality that
G is non-nullable and fl(G) = ∞. Then the claim follows from the inductive
assumption, since L(G) ⊆ L(F). 2

Based on the above we see that if the body of an iteration has an infinite
flexibility value, the iteration is flexible:

Corollary 5.4 Let F = Gm..n be a non-nullable marked #RE. If fl(G) = ∞,
then F is flexible.

Proof. By Lemma 5.3 there is a word v ∈ L(G) such that vn ∈ L(G)i for
each i = 1, . . . , n. Since vn ∈ L(F) ∩ L(G)n−1, this word is a witness to the
flexibility of F . 2

Next we derive an analogous condition (Corollary 5.6 below) that is suffi-
cient for recognizing the flexibility of iterations whose body has a finite flex-
ibility value. This result is based on the next lemma, which is analogous to
Lemma 5.3.

Lemma 5.5 Let F be a non-nullable marked #RE with fl(F) 6= ∞. Then
there is a word v ∈ L(F) such that vk ∈ L(F)i for any k ∈ N and each
i = dk/fl(F)e , . . . , k.

Proof. If fl(F) = 1, the claim obviously holds. Assume then that fl(F) > 1,
and show that the claim holds by induction on the structure of F .

For F = Gm..n there is, by the inductive assumption, a word v ∈ L(G) such
that vkm ∈ L(G)i for each i = d(km)/fl(G)e , . . . , km. Now vm ∈ L(F), and,
according to Lemma 5.2, vkm ∈ L(F)j for each

j =

⌈⌈
km

fl(G)

⌉
/n

⌉
, . . . , b(km)/mc

=

⌈⌈
km

fl(G)

⌉
/n

⌉
, . . . , k

=

⌈
km

fl(G)× n

⌉
, . . . , k (2)

= dk/fl(F)e , . . . , k (by fl(F) = (n/m)× fl(G)).

Eq. (2) holds because f(x) = x/n is a continuous and monotonically increas-
ing function such that f(x) ∈ Z implies x ∈ Z, and such functions satisfy
df(dxe)e = df(x)e (See [38, p. 71]).

In the cases F = G|H and F = GH the claim follows by induction, similarly
to the proof of Lemma 5.3. 2

16

Corollary 5.6 Let F1 = Gm1..n1
1 be a non-nullable iteration with fl(G1) 6=

∞. Let F1 = Gm1..n1
1 , . . . , FL = GmL..nL

L be multiples of F1 so that FL is the
outermost of them, and let N =

∏L
i=1 ni. If fl(G1) ≥ N/(N − 1), then F1 is

flexible in FL.

Proof. By Lemma 5.5 there is a word v ∈ L(G1) such that vk ∈ L(G1)
i for

any k ∈ N and i = dk/fl(G1)e , . . . , k. Then vN ∈ L(FL) is seen to be a
witness to the flexibility of F1 in FL as follows: Now vN ∈ L(G1)

N and thus
vN ∈ L(F1)

N/n1 also. By N/fl(G1) ≤ N − 1 and Lemma 5.5 the word vN

belongs to L(G1)
N−1, too, and thus vN ∈ L(F1)

(N−n1)/n1L(G1)
n1−1. 2

We continue to show that the numeric condition of Corollary 5.6 gives us
not only a sufficient but also a necessary condition (Corollary 5.8 below) for
testing the flexibility of iterations with a finite flexibility value. This result
follows from the next lemma, which states that the flexibility value is indeed
the maximum proportional difference between possible numbers of times that
the expression can be satisfied by a word.

Lemma 5.7 Let F be a non-nullable marked #RE with fl(F) 6= ∞. Then

fl(F) = max{h/l | ∃w ∈ Σ+ : w ∈ L(F)l ∩ L(F)h} .

The claim can be proved in two parts. For this, denote the above maximum
value by M . First, M ≥ fl(F) follows rather easily from Lemma 5.5. Second,
M ≤ fl(F) can be shown to hold by induction on the size of expression F .
The full proof is given in Appendix A.

Now we are ready to prove that for iterations with an equal minimum and
maximum bound also the converse of Corollary 5.6 holds:

Corollary 5.8 Let F1 = Gm1..n1
1 be a non-nullable marked iteration with m1 =

n1 and fl(G1) 6= ∞. Let F1 = Gm1..n1
1 , . . . , FL = GmL..nL

L be multiples of F1 so
that FL is the outermost of them, and let N =

∏L
i=1 ni. If F1 is flexible in FL,

then fl(G1) ≥ N/(N − 1).

Proof. Let w ∈ L(F1)
l be a witness to the flexibility of F1 in FL, which means

that w ∈ L(F1)
l′L(G1)

k for some l′ < l and k < n1. Since L(F1) = L(G1)
n1 ,

these mean that w ∈ L(G1)
i ∩L(G1)

j for i = l× n1 and j = l′× n1 + k. From
Lemma 5.7, j ≤ i− 1, and i ≤ N then follows that

fl(G1) ≥ i/j ≥ i/(i− 1) ≥ N/(N − 1) . 2

We argued in Section 4 about the flexibility of some iterations semantically,
based on the existence or non-existence of a witness to the flexibility. This
may not be possible in general, since the number of potential witnesses could
be infinite. The above results let us decide the flexibility of iterations syntac-
tically, by examining the minimum and maximum bounds of the iterations,

17

for example as follows:

Example 5.9 The iteration F1 = (a2..3|x1)
2 is not flexible, since fl((a2..3|x1)) =

max{3/2, 1} = 3/2, which is less than 2/(2−1). The iteration F2 = (a2..3|x1)
3

on the other hand is flexible, by fl((a2..3|x1)) = 3/2 ≥ 3/(3 − 1). Expres-
sion F1, which is not locally flexible, is anyhow flexible in the expression
E5 = ((a2..3|x1)

2)2x2. This holds by

fl((a2..3|x1)) = 3/2 > (2× 2)/(2× 2− 1) = 4/3 .

Let us summarize the above results as a complete set of rules for testing
whether a subexpression F1 = Gm1..n1

1 is flexible in a marked expression E:

(1) If m1 < n1 or if G1 is nullable, then F1 is flexible (in E); Otherwise . . .
(2) if fl(G1) = ∞, then F1 is flexible (in E); Otherwise . . .
(3) let F1 = Gm1..n1

1 , . . . , FL = GmL..nL
L be all the iterations that are multiples

of F1 in E, in order from the innermost to the outermost, and let N =∏L
i=1 ni. Then F1 is flexible in E if and only if fl(G1) ≥ N/(N − 1).

If condition (1) or (2) holds, then iteration F1 is locally flexible, which by
Lemma 4.6 implies that F1 is flexible in expression E, too. The last rule
tests whether F1 is flexible in any of its iterative multiples F1, . . . , FL, which
by Lemma 4.6 is equivalent to testing whether F1 is flexible in the whole
expression E. Notice that the last rule covers also the case that F1 has no
proper multiples; then L = 1 and N = n1.

Once the nullable subexpressions of expression E have been recognized, a sin-
gle traversal of the expression tree is sufficient for testing the above rules for
each iterative subexpression of E. During the traversal we compute and pass
upwards either information of the nullability of subexpressions or their flexi-
bility value, and pass downwards to any factors the product of the maximum
bounds of their iterative multiples. Thus, altogether, the flexible iterations can
be recognized in linear time with respect to the length of the expression E.

6 Analyzing unambiguity of #REs

In this section we develop methods based on follow relations for analyzing
the unambiguity of #REs, and formally prove them correct. Follow relations
that are used for constructing automata (see, e.g., [8] or [10, Sec. 5.2]) from a
marked expression E record all pairs of positions (x, y) such that xy can ap-
pear as a subword of some w ∈ L(E). Such pairs of positions (x, y) are called
transitions of the expression [6]. We say that a pair (x, y) is a forward transi-
tion of E if (x, y) ∈ Last(G)×First(H) for some subexpression F = GH of E.
If (x, y) is not a forward transition but (x, y) ∈ Last(G) × First(G) for some

18

iterative subexpression F = Gm..n of E, we say that it is a backward transi-
tion of E. Obviously there are no other transitions than forward or backward
transitions, and each forward or backward transition of a trim expression can
be shown to be indeed a transition.

The use of follow relations for analyzing unambiguity (for example, [33]) is
different: any two distinct positions y and z with a common underlying sym-
bol (y)\ = (z)\ are considered to be a conflicting pair and an indication of
ambiguity, if for some position x the transitions (x, y) and (x, z) have been
recorded in the follow relation. The follow relations that are used for analyzing
unambiguity of #REs need to avoid recording some transitions. As a simple
example, the expression E = a2

1a2 is unambiguous even though both (a1, a1)
and (a1, a2) are transitions of E. The point is that after processing any prefix
of input it is always clear whether the next input symbol can be matched by
a1 or a2.

Definition 6.1 Let E be a marked #RE. We define the follow relation FollE(F) ⊆
Pos(F)× Pos(F) for each subexpression F of E inductively as follows:

• If F = λ or F = x for any x ∈ Π, then FollE(F) = ∅;
• If F = G|H, then FollE(F) = FollE(G) ∪ FollE(H);
• If F = GH, then FollE(F) = FollE(G) ∪ FollE(H) ∪ [Last(G)× First(H)];
• If F = Gm..n, then

FollE(F) =

FollE(G) ∪ [Last(G)× First(G)] if F is flexible in E,

FollE(G) otherwise;

If it is clear from the context that the expression being analyzed for ambiguity
is E, we use a simpler notation Foll(F) instead of FollE(F).

Observation 6.2 Let F and G be such subexpressions of a marked expression
E that F is a subexpression of G. Then FollE(F) ⊆ FollE(G).

Observation 6.3 All forward transitions of E are recorded in Foll(E).

Example 6.4 Follow relations can be used to test for unambiguity as follows:

(1) The expression E = (a3..4
1 |b1)

2a2 is ambiguous, which is notified by the
underlined pairs in Foll(E) = {(a1, a1), (a1, a2), (b1, a2)}.

(2) The expression E = (a3..4
1 |b1)

2b2 is unambiguous; Since (a3..4
1 |b1)

2 is not
flexible in E, the transitions (a1, b1) and (b1, b1) are not recorded in Foll(E).
Thus there are no conflicting pairs in Foll(E) = {(a1, a1), (a1, b2), (b1, b2)}.

(3) The iteration F = (G)2 with G = a1x1a2? is ambiguous. Since it is
not flexible, Foll(F) = Foll(G) = {(a1, x1), (x1, a2)}, which contains no
conflicting pairs. In order to observe the ambiguity we need to notice the
conflict between positions a1 and a2 by

19

(x1, a2)∈Foll(G) and

(x1, a1)∈Last(G)× First(G) .

As discussed above, the follow relation does not record all transitions. On
the other hand, it is necessary that Foll(E) records those transitions in any
subexpression F of E that could, after accepting some input by F , be followed
to continue matching input by further positions of F . The pair (x1, a2) above
is an example of such a transition. This property is formalized and proved in
the following lemma.

Lemma 6.5 Let F be a subexpression of a marked expression E. If

ux ∈ L(F) and uxyr ∈ L(F)

for some x, y ∈ Pos(F) and u, r ∈ Pos(F)∗, then (x, y) ∈ Foll(F).

The rather long inductive proof of Lemma 6.5 is given in Appendix B.

The next theorem, which is the main result of this section, presents a correct
and complete method for testing unambiguity of #REs.

Theorem 6.6 Let E be a marked #RE. Expression E is ambiguous if and
only if there are

(A) y, z ∈ First(E) such that y 6= z and (y)\ = (z)\, or
(B) (x, y), (x, z) ∈ Foll(E) such that y 6= z and (y)\ = (z)\, or
(C) an iteration F = Gm..n in E with (x, y) ∈ Foll(G) and (x, z) ∈ Last(G)×

First(G) such that y 6= z and (y)\ = (z)\.

The proof of Theorem 6.6 is a somewhat tedious case-analysis, which is given
in Appendix C. Lemma 6.5 is used for arguing that the conditions (A)–(C)
are sufficient for recognizing any ambiguous expression.

Based on Theorem 6.6 we can check the unambiguity of an expression E by
computing the First sets and Follow relations during a bottom-up traversal of
the expression tree for E, and checking condition (C) for each iteration. Notice
that condition (C) needs to be checked for non-flexible iterations only: If F is
flexible in E, then based on the construction of Foll(F) and Observation 6.2
this condition is covered by condition (B). All of this can be done in low-order
polynomial time:

Theorem 6.7 Let E be a marked expression over a finite alphabet Σ. It can
be decided in time O(|E|2) whether E is unambiguous or not.

Proof. We discussed in Section 5 how the flexible iterations of E can be recog-
nized in linear total time. The Follow relation can be realized by computing for
each position x ∈ Pos(E) a follow set, foll(x), of positions such that y ∈ foll(x)
if and only if (x, y) ∈ Foll(E). The First, Last and follow sets can be imple-
mented as linked lists of positions, which are computed during a bottom-up

20

traversal of the expression tree for E. The rules for computing the First and
Last sets were given in Table 1 on page 5. The follow sets are updated in two
cases: (1) For a subexpression F = GH the positions of First(H) are added
to foll(x) for each position x ∈ Last(G); and (2) for a flexible iteration Gm..n

each position of First(G) is similarly added to foll(x) for each x ∈ Last(G), if
it is not already there.

We can fix an arbitrary ordering for the symbols of Σ, say, based on the
dictionary order of their binary representation. Based on this ordering, the
lists can be maintained in increasing order of the underlying symbols of the
positions, via implementing unions by merging lists. During a merge, it can be
checked in linear time with respect to the length of the resulting list whether
two different positions with a common underlying symbol would be included
in a First or a follow list. As soon as this happens, we can report that the
expression is ambiguous. This restricts the maximum length of each First and
follow list to |Σ|. Similarly, condition (C) can be tested by scanning for each
position x ∈ Last(G) the lists foll(x) and First(G), in order to see if they
contain two different positions with a common underlying symbol.

Since each of the O(|E|) subexpressions of E has at most |E| last positions,
and the maximum length of each First and follow list is limited by a constant,
the total time is O(|E|2). 2

Brüggemann-Klein has shown that 1-unambiguity can be tested in linear time
for both traditional regular expressions [8] and regular expressions extended
with the SGML ’&’ operator [33]. Her linear-time algorithms are based on
transforming the expressions first into so-called star normal form, which en-
sures that any unions performed for computing follow sets are disjoint. This
transformation does not seem to be directly applicable to #REs, though. For
example, consider the expressions E1 = (F)∗ and E2 = (F)2 with F = a?b?.
The star normal form of expression E1 is now (F ◦)∗ where F ◦ = a|b. A similar
transformation applied to the body of a numeric iteration does not seem to
lead to an equivalent “star normal form”: For example, expression E2 accepts
the word abab, while expression (F ◦)2 = (a|b)2 accepts words of length two
only. On the other hand, expressions of the form (F ◦)m..4 would accept words
like a4 and b4, which are rejected by expression E2.

The star-normal-form transformation eliminates directly nested iterations like
(a∗)∗, which gets replaced by the equivalent form a∗. On the other hand, replac-
ing nested numeric iterations by a single one generally changes the meaning
of the expression. For example, the expression (a4..5)1..3 describes the language
{a4, a5}∪{a8, a9, a10}∪{a12, a13, a14, a15}, which cannot be described by a sin-
gle iteration. In general, elimination of nested numeric iterations may lengthen
expressions by an exponential factor [18].

In some situations the commonly made assumption of Theorem 6.7 about a
finite alphabet is not justified. For example, XML content models use element

21

tag-names of unlimited length as symbols of their alphabet. In such cases,
when the alphabet is rather countable than finite, we get a weaker but still
polynomial time bound for checking the unambiguity of expressions:

Theorem 6.8 Let E be a marked expression over an unlimited alphabet Σ. It
can be decided in time O(|E|3) whether E is unambiguous or not.

Proof. Let n = |E|. Expression E can contain at most n occurrences of alpha-
bet symbols. Thus we can replace them by numbers in {1, . . . , n} in O(n log n)
time by applying any standard dictionary (See, e.g., [39]), and use {1, . . . , n}
as the alphabet. Obviously this does not affect the unambiguity of E. After
this, the computation of the First and follow lists can proceed similarly to
the proof of Theorem 6.7. Now the length of each list is O(n), which yields
the time bound of O(n3). 2

7 Conclusions

We have described and formally justified a polynomial-time procedure for
testing the 1-unambiguity of regular expressions with numeric occurrence in-
dicators. Previously published solutions [35,26,36] to this problem either re-
quire exponential amounts of resources in the worst case or produce erroneous
results.

One-unambiguity can be tested for expressions with a finite alphabet in qua-
dratic time, and for expressions with an unlimited alphabet in cubic time.
While satisfactory, these results also leave room for potential improvement.
As comparison, the unambiguity of standard regular expressions and SGML
content models over a finite alphabet can be tested in linear time [8,33], but
these methods do not seem directly applicable to #REs.

The usefulness of unambiguity as a constraint on allowed document content
models could be discussed in general. The original intent of unambiguity in
SGML was to make content model expressions easier for humans to read [40].
On the other hand, unambiguity has also been criticized as an unnecessary
restriction [41]. Some XML schema languages like Relax NG do not require
unambiguity. Incidentally, Relax NG does not include numeric occurrence in-
dicators either [42].

It seems that unambiguity makes the efficient matching of #REs essentially
easier [32]. According to our observations many publicly available implemen-
tations of #REs either fail because of exponential use of resources or pro-
duce erroneous results with sufficiently complicated expressions. It would be a
worthwhile study to identify specific and useful combinations of extensions and
restrictions of regular expressions which lead to both theoretically and prac-
tically efficient implementations. We have described earlier a polynomial-time

22

algorithm for performing matching with unrestricted #REs, but this algo-
rithm requires in the worst case quadratic space with respect to the length
of the input word [18]. What we would like to have is a practical algorithm
for matching #REs, which would run in low-order polynomial time and in
constant space.

Acknowledgments

We thank prof. Martti Penttonen for his comments on a draft version of this
paper.

References

[1] S. Kleene, Realization of events in nerve sets and finite automata, in:
C. Shannon, J. McCarthy (Eds.), Automata Studies, Princeton University
Press, Princeton, New Jersey, 1956, pp. 3–42.

[2] IEEE, New York, NY, USA, IEEE Std 1003.1-2001 Standard for Information
Technology — Portable Operating System Interface (POSIX) Base Definitions,
Issue 6 (2001).

[3] L. Wall, R. Schwartz, Programming perl, O’Reilly & Associates, Inc.,
Sebastopol, CA, 1991.

[4] H. Thompson, D. Beech, M. Maloney, N. Mendelsohn (Eds.), XML Schema
Part 1: Structures, W3C Recommendation, 2001.

[5] A. Brüggemann-Klein, D. Wood, One-unambiguous regular languages,
Information and Computation 142 (1998) 182–206.

[6] R. McNaughton, H. Yamada, Regular expressions and state graphs for
automata, IRE Transactions on Electronic Computers 9 (1) (1960) 39–47.

[7] V. Glushkov, The abstract theory of automata, Russian Mathematical Surveys
16 (1961) 1–53.

[8] A. Brüggemann-Klein, Regular expressions into finite automata, Theoretical
Computer Science 120 (1993) 197–213.

[9] P. Hazel, Perl Compatible Regular Expressions, University of Cambridge,
http://www.pcre.org/ (2003).

[10] A. Aho, Algorithms for finding patterns in strings, in: J. van Leeuwen (Ed.),
Handbook of Theoretical Computer Science – Volume A: Algorithms and
Complexity, Elsevier/MIT Press, 1994, Ch. 5, pp. 255–300.

[11] A. Aho, R. Sethi, J. Ullman, Compilers, principles, techniques, and tools,
Addison-Wesley, 1986.

23

[12] S. Sippu, E. Soisalon-Soininen, Parsing Theory, Vol. I: Languages and Parsing,
Springer-Verlag, 1988.

[13] M. Crochemore, T. Lecroq, Pattern matching and text compression algorithms,
in: A. Tucker (Ed.), The Computer Science and Engineering Handbook, CRC
Press, 2003, Ch. 8.

[14] A. Meyer, L. Stockmeyer, The equivalence problem for regular expressions with
squaring requires exponential space, in: 13th Annual IEEE Symp. on Switching
and Automata theory, IEEE, 1972, pp. 125–129.

[15] W. Martens, F. Neven, T. Schwentick, Complexity of decision problems for
simple regular expressions, in: J. Fiala, V. Koubek, J. Kratochv́ıl (Eds.), Proc.
of the 29th Intl. Symp. on Mathematical Foundations of Computer Science,
Springer-Verlag, 2004, pp. 889–900.

[16] J. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata Theory,
Languages, and Computation, 2nd Edition, Addison-Wesley, 2001.

[17] D. Wood, Theory of Computation, John Wiley & Sons, Inc., 1987.

[18] P. Kilpeläinen, R. Tuhkanen, Regular expressions with numerical occurrence
indicators—preliminary results, in: Proc. of the Eighth Symposium on
Programming Languages and Software Tools, University of Kuopio, Department
of Computer Science, 2003, pp. 163–173.

[19] P. Kilpeläinen, Inclusion of unambiguous #REs is NP-hard,
unpublished note, University of Kuopio. Available at
http://www.cs.uku.fi/~kilpelai/numRE_incl_is_hard.pdf. (May 2004).

[20] International Organization for Standardization, ISO 8879: Information
Processing—Text and Office Systems—Standard Generalized Markup
Language (SGML) (Oct. 1986).

[21] T. Bray, J. Paoli, C. M. Sperberg-McQueen (Eds.), Extensible Markup
Language (XML) 1.0, W3C Recommendation, 1998, the latest version is
available at http://www.w3.org/TR/REC-xml.

[22] M. Murata, D. Lee, M. Mani, Taxonomy of XML schema languages
using formal language theory, in: Proceedings of Extreme Markup
Languages, Montréal, Québec, 2001, pp. 153–166, available at
http://www.mulberrytech.com/Extreme/Proceedings/.

[23] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web Services
Description Language (WSDL) 1.1, W3C Note 15 March 2001. The latest
version is available at http://www.w3.org/TR/wsdl.

[24] G. Alonso, F. Casati, H. Kuno, V. Marhiraju, Web Services—Concepts,
Architectures and Applications, Springer-Verlag, 2004.

[25] J. Clark, RELAX NG and W3C XML Schema, A message
on the posting list ietf-xml-use.imc.org. Available at
http://www.imc.org/ietf-xml-use/mail-archive/msg00217.html (2002).

24

[26] M. Fuchs, A. Brown, Supporting UPA on an extension of XML Schema,
in: Extreme Markup Languages 2003, IDEAlliance, Montréal, Québec, 2003,
available at http://www.mulberrytech.com/Extreme/Proceedings/.

[27] H. Thompson, D. Beech, M. Maloney, N. Mendelsohn (Eds.), XML Schema
Part 1: Structures Second Edition, W3C Recommendation, 2004.

[28] A. Brüggemann-Klein, D. Wood, The validation of SGML content models,
Mathematical and Computer Modelling 25 (4) (1997) 73–84.

[29] P. Kilpeläinen, SGML & XML content models, Markup Languages: Theory &
Practice 1 (2) (1999) 53–76.

[30] A. Brown, M. Fuchs, J. Robie, P. Wadler (Eds.), XML Schema: Formal
Description, W3C Working Draft, 25 September 2001. The latest version is
available at http://www.w3.org/TR/xmlschema-formal/ .

[31] A.Brown, M. Fuchs, J. Robie, P. Wadler, MSL: a model for W3C XML Schema,
Computer Networks 39 (5) (2002) 507–521.

[32] P. Kilpeläinen, R. Tuhkanen, Towards efficient implementation of XML
schema content models, in: Proc. of the 2004 ACM Symposium on Document
Engineering, ACM Press, 2004, pp. 239–241.

[33] A. Brüggemann-Klein, Unambiguity of extended regular expressions in SGML
document grammars, in: T. Lengauer (Ed.), Algorithms — ESA 93, Springer-
Verlag, 1993, pp. 73–84.

[34] J. Berstel, J.-E. Pin, Local languages and the Berry-Sethi algorithm, Theoretical
Computer Science 155 (1996) 439–446.

[35] H. Thompson, R. Tobin, Using finite state automata to implement
W3C XML Schema content model validation and restriction checking,
in: XML Europe 2003, IDEAlliance, London, UK, 2003, available at
http://www.ltg.ed.ac.uk/~ht/XML_Europe_2003.html

[36] C. M. Sperberg-McQueen, Applications of Brzozowski derivatives to
XML Schema processing, in: Extreme Markup Languages 2005,
IDEAlliance, Montréal, Québec, 2005, available at
http://www.mulberrytech.com/Extreme/Proceedings/.

[37] J. Brzozowski, Derivatives of regular expressions, Journal of the ACM 11 (4)
(1964) 481–494.

[38] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison-
Wesley, 1989.

[39] K. Melhorn, A. Tsakalidis, Data structures, in: J. van Leeuwen (Ed.), Handbook
of Theoretical Computer Science – Volume A: Algorithms and Complexity,
Elsevier/MIT Press, 1994, Ch. 6, pp. 301–341.

[40] C. F. Goldfarb, The SGML Handbook, Clarendon Press, Oxford, 1990.

[41] M. Mani, Keeping chess alive: Do we need 1-unambiguous content models?,
talk given at Extreme Markup Languages 2001 in Montréal. Slides are available
at http://web.cs.wpi.edu/~mmani/publications/extreme2001chess.ppt
(Aug. 2001).

25

[42] J. Clark, M. Murata (Eds.), RELAX NG Specification, OASIS, 2001,
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html.

A Proof of Lemma 5.7

The claim was that if F is a non-nullable marked #RE with fl(F) 6= ∞, then

fl(F) = max{h/l | ∃w ∈ Σ+ : w ∈ L(F)l ∩ L(F)h} .

Proof. Let M = max{h/l | ∃w ∈ Σ+ : w ∈ L(F)l ∩ L(F)h}.

In the case that F = x for some x ∈ Π we have fl(F) = 1. Thus the claim
fl(F) = M clearly holds, since then w ∈ L(F)l ∩L(F)h only if l = h. For the
inductive cases assume that the claim holds for the proper subexpressions of F .
Take an integer k large enough such that dk/fl(F)e = k/fl(F). By Lemma 5.5
there is a word v ∈ L(F) such that vk ∈ L(F)k/fl(F) ∩ L(F)k, which implies
that M ≥ fl(F). Next we show that M ≤ fl(F), which entails the claim. To
see this, let l and h be integers and w ∈ Σ+ such that w ∈ L(F)l ∩L(F)h and
h/l = M .

In the case F = G|H the condition w ∈ L(F)l implies that w consists of l1
subwords belonging to L(G) and of l2 subwords belonging to L(H), for some
integers l1 and l2 with l1 + l2 = l. Similarly, w ∈ L(F)h means that w consists
of h1 subwords belonging to L(G) and of h2 subwords belonging to L(H) with
h1 +h2 = h. By the inductive assumption h1 ≤ l1×fl(G) and h2 ≤ l2×fl(H),
and thus M ≤ fl(F) is seen as follows:

h/l = (h1 + h2)/(l1 + l2)

≤ (l1 × fl(G) + l2 × fl(H))/(l1 + l2)

≤ (l1 + l2)×max{fl(G), f l(H)}/(l1 + l2) = fl(F)

Next consider the case F = GH. If neither G nor H is nullable, the word
w ∈ L(F)l consists of subwords w1, . . . , wl ∈ L(F) of the form wi = uivi with
ui ∈ Pos(G)+ and vi ∈ Pos(H)+. Therefore w ∈ L(F)l ∩ L(F)h only if l = h,
and thus M = fl(F) = 1. Assume then that ε ∈ L(G). (The case ε ∈ L(H)
is analogous.) Now the word w ∈ L(F)l consists of a unique sequence of one
or more “blocks” βi as w = β1 . . . βk, where any non-empty occurrence of G
denotes the beginning of the next block βi+1. (For an example, see Fig. A.1.)
The boundary of two blocks cannot be spanned by any occurrence of F . Now
let the division of w into w1 . . . wl consist of li occurrences of F in block
βi, for each i = 1, . . . , k. Similarly, let w ∈ L(F)h be witnessed by each of
the blocks βi consisting of hi occurrences of F . By the inductive assumption

26

w = b b b||a b b b||a b b b|b b b ∈ L(F)4

= b|b|b||a b|b|b||a b|b|b|b|b|b ∈ L(F)12

Fig. A.1. A coarse (above) and a fine (below) division of the three blocks b3, ab3

and ab6 of a word w = b3ab3ab6 into occurrences of expression F = a?b1..3

hi ≤ fl(H) × li for each i = 1, . . . , k. The result M ≤ fl(F) is then seen as
follows:

h/l =

(
k∑

i=1

hi

)
/ l ≤

(
fl(H)×

k∑
i=1

li

)
/ l = fl(F)

The last equation above holds by l =
∑k

i=1 li and fl(F) = fl(H).

Finally consider the case F = Gm..n. Now w ∈ L(F)h implies that w ∈ L(G)h′

for some h′ ≥ hm. Similarly w ∈ L(F)l implies that w ∈ L(G)l′ for some
l′ ≤ ln. Then M ≤ fl(F) is seen as follows:

h/l ≤ h′/m

l′/n
= (h′/l′)× (n/m)

≤ fl(G)× (n/m) = fl(F) 2

B Proof of Lemma 6.5

The claim was that if F is a subexpression of a marked expression E such that

ux ∈ L(F) and uxyr ∈ L(F)

for some x, y ∈ Pos(F) and u, r ∈ Pos(F)∗, then (x, y) ∈ Foll(F).

Proof. If (x, y) is a forward transition of F , then (x, y) ∈ Foll(F).

Assume then that (x, y) is a backward transition. That is, there is some
iteration Fi = Gmi..ni

i in F , for which (x, y) ∈ Last(Gi) × First(Gi). Let
all such subexpressions of F be, in order from the innermost to the out-
ermost, F1 = Gm1..n1

1 , . . . , Fk = Gmk..nk
k . If mi < ni for any i = 1, . . . , k,

then Fi is flexible in E (by Observation 4.3 and by Lemma 4.6), and thus
(x, y) ∈ Foll(Fi) ⊆ Foll(F).

Assume then that mi = ni for all i = 1, . . . , k. We show that nevertheless some
of iterations F1, . . . , Fk is flexible in F , and thus (x, y) ∈ Foll(F). To see this,
let us divide the word ux for each i = 1, . . . , k as ux = αiuix so that uix is
the longest suffix of ux that consists of positions of Fi only. This can be done
because x ∈ Pos(Fi) for all i = 1, . . . , k. (Since Pos(Fi−1) ⊆ Pos(Fi), we have
that ui−1x is a suffix of uix.) We prove by induction that the following holds

27

for all i = 1, . . . , k: If uix ∈ L(Fi)
l and uixyri ∈ L(Fi)

l′ for some l′ ≤ l and
some prefix ri of r, then some of iterations F1, . . . , Fi is flexible in F . Because
ukx ∈ L(Fk)

1 and ukxyrk ∈ L(Fk)
1 for some prefix rk of r, this entails the

claim.

For the base case assume that u1x ∈ L(F1)
l and u1xyr1 ∈ L(F1)

l′ for some
l′ ≤ l and some prefix r1 of r. Since F1 = (G1)

m1 and (x, y) is not a tran-
sition of G1, we have for some v′1, . . . , v

′
l′×m1

∈ L(G1) that v′1 . . . v′h′ = u1x
and v′h′+1 . . . v′l′×m1

= yr1, for some h′ < l′ ×m1. Now u1x = v′1 . . . v′h′ ∈
L(F1)

bh′/m1cL(G1)
h′ mod m1 . Since bh′/m1c < l and h′ mod m1 < m1, this

means that u1x is a witness to the flexibility of F1 in F .

Let then i > 1. Assume that uix ∈ L(Fi)
l and uixyri ∈ L(Fi)

l′ where l′ ≤ l and
ri is some prefix of r. Since Fi = (Gi)

mi , this means that uix = v1 . . . vl×mi
for

some v1, . . . , vl×mi
∈ L(Gi), and uixyri = v′1 . . . v′l′×mi

for some v′1, . . . , v
′
l′×mi

∈
L(Gi). Let p ∈ N be minimal for which uix ∈ L(Gi)

p. Since uix ∈ L(Gi)
l×mi ,

we know that p ≤ l ×mi. Assume first that p < l ×mi. Then uix is seen to
be a witness to the flexibility of Fi in F , similarly to the base case. Assume
then that p = l ×mi. This implies that l′ = l and that uix, which is a prefix
of v′1 . . . v′l×mi

, is not a prefix of v′1 . . . v′l×mi−1. Thus xy is a subword of v′l×mi
∈

L(Gi). Since (x, y) is not a forward transition, xy must be a subword of a word
in L(Fi−1).

Let h < l ×mi be maximal such that vh+1 . . . vl×mi
has the word ui−1x as a

suffix. Then ui−1x ∈ L(Fi−1)
l×mi−h. Similarly, let h′ < l ×mi be maximal such

that v′h′+1 . . . v′l×mi
has ui−1xyri as a suffix.

Now both v1 . . . vh and v′1 . . . v′h′ are prefixes of ui. If v1 . . . vh 6= v′1 . . . v′h′ , either
of the words vh+1, v

′
h′+1 ∈ L(Gi) contains a symbol of Last(Gi) − Pos(Fi−1)

followed by a word of L(Fi−1). From this we can show (in the next Lemma B.1)
that ε ∈ L(Gi), and thus Fi is flexible.

Assume then that v1 . . . vh = v′1 . . . v′h′ . Now it must be that h′ ≥ h, since
otherwise uix = v′1 . . . v′h′vh+1 . . . vl×mi

would consist of less than p = l ×mi

words of Gi, contrary to the previous assumption. Now ui−1x ∈ L(Fi−1)
l×mi−h

and ui−1xyr′i ∈ L(Fi−1)
l×m1−h′

for some prefix r′i of ri. By h′ ≥ h we have
that l ×m1 − h′ ≤ l ×m1 − h, and thus by the inductive assumption some of
iterations F1, . . . , Fi−1 is flexible in F . 2

The below lemma completes the above proof for the case where we argued Gi

to be nullable:

Lemma B.1 Let Gi be a marked expression and Fi−1 a subexpression of Gi

which is not a proper subexpression of any iteration in Gi, and First(Fi−1) ⊆
First(Gi). If αzβvγ ∈ L(Gi) for some words α, β, γ ∈ Pos(Gi)

∗, some position
z ∈ Last(Gi)− Pos(Fi−1) and some word v ∈ L(Fi−1), then ε ∈ L(Gi).

Proof. Only two cases arise in the structural induction on Gi. Consider first

28

the case that Gi = H1H2. If αzβvγ′ ∈ L(H1) for some prefix γ′ of γ, then
ε ∈ L(H1) by the inductive assumption. Also ε ∈ L(H2) must hold because
of z ∈ Pos(H1) and z ∈ Last(Gi). Therefore ε ∈ L(H1)L(H2) = L(Gi). The
case that α′zβvγ ∈ L(H2) for some suffix α′ of α is similar: Then ε ∈ L(H2)
by induction, and ε ∈ First(H1) must hold since Fi−1 is a subexpression of
H2 and First(Fi−1) ⊆ First(Gi). The third possibility is that z ∈ Pos(H1) and
Fi−1 is a subexpression of H2. By z ∈ Last(Gi) then ε ∈ L(H2), and ε ∈ L(H1)
holds by First(Fi−1) ⊆ First(Gi).

The second case is that Gi = H1|H2. Then αzβvγ ∈ L(Hj) for j = 1 or j = 2,
which by the inductive assumption implies that ε ∈ L(Hj) ⊆ L(Gi). 2

C Proof of Theorem 6.6

The claim was the sufficiency and the correctness of the following conditions
for testing the ambiguity of a marked expression E:

(A) y, z ∈ First(E) such that y 6= z and (y)\ = (z)\, or
(B) (x, y), (x, z) ∈ Foll(E) such that y 6= z and (y)\ = (z)\, or
(C) an iteration F = Gm..n in E with (x, y) ∈ Foll(G) and (x, z) ∈ Last(G)×

First(G) such that y 6= z and (y)\ = (z)\.

Proof. Assume first that E is ambiguous, that is, for some u, v, r ∈ Pos(E)∗

and some y, z ∈ Pos(E) such that y 6= z we have uyr, uzv ∈ L(E) and
(y)\ = (z)\. We show that then some of conditions (A), (B) or (C) holds. First,
if u = ε, then obviously condition (A) holds. Assume then that uxyr, uxzv ∈
L(E), where x is some position of E. If both of (x, y) and (x, z) are forward
transitions of E, then condition (B) holds.

Assume then that (x, y) is a backward transition of E. That is, there is some
subexpression Fi = Gmi..ni

i of E, for which (x, y) ∈ Last(Gi) × First(Gi). Let
all the subexpressions for which this holds be, in order from the innermost
to the outermost, F1 = Gm1..n1

1 , . . . , Fk = Gmk..nk
k . Similarly to the proof of

Lemma 6.5, let us divide the word ux as ux = αkukx such that ukx is the
longest suffix of ux that consists of positions of Fk only.

Consider different possibilities that can cause uxzv ∈ L(E). First assume that
z 6∈ Pos(Fk). There are two possibilities. First, E can contain a subexpression
FG such that Fk is a subexpression of F with x ∈ Last(F) and z ∈ First(G).
Since ukx ∈ L(Fk) and ukxyr′ ∈ L(Fk) for some prefix r′ of r, we have (x, y) ∈
Foll(Fk) ⊆ Foll(E) by Lemma 6.5, and (x, z) ∈ Foll(E) by construction.
Thus condition (B) holds. Second, E can contain an iteration F = Gm..n

such that Fk is a subexpression of G and (x, z) ∈ Last(G) × First(G). Now
y 6∈ First(G), since otherwise F would be one of F1, . . . , Fk, which is not
possible by z 6∈ Pos(Fk). Thus again, similarly to the above, we have (x, y) ∈

29

Foll(Fk) ⊆ Foll(G), and condition (C) holds.

Then assume that z ∈ Pos(Fk). If (x, z) is a forward transition in any G1, . . . , Gk,
then (x, z) ∈ Foll(Gk) and condition (C) holds on iteration Fk. The last pos-
sibility is that (x, z) is a backward transition in Fk. Let all the iterations
Hj = I

oj ..pj

j for which (x, z) ∈ Last(Ij) × First(Ij) be, in order from the in-
nermost to the outermost, H1 = Io1..p1

1 , . . . , Hl = Iol..pl
l . If Fi = Hj for any

i = 1, . . . , k and j = 1, . . . , l, then y, z ∈ First(Fi), and either condition (A) or
(B) holds. (See Lemma C.1 below.) Let then finally Hl be a proper subexpres-
sion of G1 and z 6∈ First(G1). Let ulx be the longest prefix of ux that consists
of positions of Hl only. Then ulx ∈ L(Hl), and ulxzv′ ∈ L(Hl) for some prefix
v′ of v. This implies by Lemma 6.5 that (x, z) ∈ Foll(Hl) ⊆ Foll(G1), and thus
condition (C) holds on iteration F1.

Assume then that some of conditions (A), (B) or (C) holds. If (A) holds, E is
obviously ambiguous.

Assume then that condition (B) holds for transitions (x, y) and (x, z). Let
F be the minimal subexpression of E for which both (x, y), (x, z) ∈ Foll(F).
The first possibility is that F = GH. In this case assume without loss of
generality that (x, z) ∈ Last(G) × First(H). If y ∈ First(H), too, then ex-
pression F (and thus E) is clearly ambiguous. Otherwise (x, y) ∈ Foll(G). If
(x, y) is a forward transition, F is again easily seen ambiguous. Assume then
that (x, y) is a backward transition, that is, (x, y) ∈ Last(G1) × First(G1)
for some subexpression F1 = Gm1..n1

1 of G which is flexible in E. Let F1 =
Gm1..n1

1 , . . . , Fk = Gmk..nk
k be subexpressions of E, in order from the innermost

to the outermost, such that (x, y) ∈ Last(Gi) × First(Gi) for all i = 1, . . . , k,
and k ≥ 1 is the smallest for which F1 is flexible in Fk. By Observation 2.5
we have that First(F1) ⊆ First(Fk) and Last(F1) ⊆ Last(Fk), and thus some
word w ∈ L(Fk) is a witness to the flexibility of F1 in Fk. Now there are two
possibilities. Either (i) Fk is a subexpression of G, or (ii) F = GH is a subex-
pression of Gi for some i = 2, . . . , k such that Fi−1 is a subexpression of G.
In case (i) the word w can be continued, as a subword of a word accepted by
F = GH, both by z ∈ First(H) and by y ∈ First(G1) (since w is a witness to
the flexibility of F1 = Gm1..n1

1). This means that F is ambiguous. In case (ii)
the expression H must be nullable, because F = GH is a subexpression of
Gi and x ∈ Pos(G) ∩ Last(Gi). Let then uv ∈ L(Gi) be a word such that
v ∈ L(G), and consider how it could be continued as a word accepted by
Fi = Gmi..ni

i . By F = GH the word uv can continue with z ∈ First(H). Since
the word uv also constitutes an iteration of the body of Fi, it may continue
also by y ∈ First(Gi) (as another iteration of Fi). Therefore Fi is ambiguous.

The second possibility is that the minimal subexpression F of E for which both
(x, y), (x, z) ∈ Foll(F) is an iteration F = Gm..n. Without loss of generality
assume that (x, z) ∈ Last(G)×First(G). If (x, y) is a forward transition in G,
the expression is again seen ambiguous. Assume then that (x, y) ∈ Last(G1)×
First(G1) for some subexpression F1 = Gm1..n1

1 of G such that F1 is flexible in

30

E. There are two possibilities. First, F1 can be flexible in G. By Observation 2.5
we have that Last(F1) ⊆ Last(G). Therefore there is a word uw ∈ L(G) such
that w is a witness to the flexibility of F1 in G. Then F is ambiguous since
it accepts input that begins with uw and continues either by y ∈ First(G1)
(by the flexibility of F1 = Gm1..n1

1) or by z ∈ First(G) (as another iteration
of F). Second, F1 may be flexible in some multiple I of F1 such that F is
a subexpression of I. Then both y, z ∈ First(F), which makes expression F
clearly ambiguous.

Finally, assume that condition (C) holds for transitions (x, y) and (x, z) in an
iteration F = Gm..n. Then F is seen ambiguous similarly to the above analysis.

2

Lemma C.1 Let E be a marked #RE, and let y, z ∈ First(F) for a subex-
pression F of E. Then y, z ∈ First(E) or (x, y), (x, z) ∈ Foll(E) for some
x ∈ Pos(E).

Proof. Straightforward induction. 2

31

