An optimization-based approach to the
multiple static delivery technique in
radiation therapy

J. Tervo, P. Kolmonen, T. Lyyra-Laitinen,
J.D. Pinter, T. Lahtinen

Report A/1999/4

ISBN 951-781-612-X
ISSN 0787-6416

UNIVERSITY OF KUOPIO

Department of Computer Science
and Applied Mathematics

P.0.Box 1627, FIN-70211 Kuopio, FINLAND




An optimization-based approach to the multiple static delivery
technique in radiation therapy

J. Tervo
Department of Computer Science and Applied Mathematics,
University of Kuopio
Research Institute for Radiotherapy Research,
Department of Applied Physics,
University of Kuopio

P. Kolmonen, T.Lyyra-Laitinen
Research Institute for Radiotherapy Research,
Department of Applied Physics,
University of Kuopio

J. D. Pinter
Pinter Consulting Services and Dalhousie University,
Halifax, NS, Canada

T. Lahtinen
Department of Oncology,
Kuopio University Hospital

Abstract

The paper considers the intensity modulated radiation therapy (inverse) treatment planning. An
approach to determine the trajectories of the leaves of the multileaf collimator (MLC) in order to pro-
duce the prescribed intensity distribution is developed. The paper concentrates on the multiple static
delivery technique. A mathematical model for calculating the intensity distribution with the help of
locations of the leatheads of subsequent subfields is constructed. Furthermore an optimization model
in which the decision variables are the locations of leatheads is developed. The relevant constraints
are considered as well. The optimization problem is a large dimensional constrained nonlinear global
extremum problem. It is solved by the LGO (Lipschitz (Continuous) Global Optimizer) program sys-
tem. Comparisons with other optimization method (Hooke-Jeeves iteration) are included. Numerical
experiments are presented to confirm the functionality of the method.

AMS-classification: 49-04, 92C50, 93-04

1 Introduction

Development of new accessories for the linear accelerators, especially the multileaf collimator (MLC),
have provided new potentials in dose delivery for patients. One of the most promising dose delivery
techniques is intensity modulated radiation therapy, allowing the construction of sharp dose gradients
between tumor and healthy tissue and dose distributions with better deformity of planning target volume.
However, these new techniques set new demands also for the treatment planning. Significant research is
focused nowadays in developing new algorithms for this purpose (for reviews see e.g. [3, 5, 6, 29]).



In intensity modulated radiation therapy treatment planning, there are traditionally two basic prob-
lems. The first one is to determine the intensity distribution in the treatment domain in such a way that
it generates as well as possible the dose distribution in the patient domain prescribed by the oncologist.
The second problem is to determine the trajectories of the leaves of the multileaf collimator to produce the
obtained intensity distribution. Both of these are inverse problems. For the first problem, there have been
developed various kind of inverse treatment planning algorithms (e.g. [15, 7, 19, 16, 24, 11, 31, 18, 27]).
In the second problem the methods to control the collimator leaves can be divided into dynamic col-
limation and multiple static collimation. In dynamic collimation the leaves are be moved during the
irradiation and so the dose is delivered continuously corresponding to each individual field. The radi-
ation is interrupted only during the selection of the subsequent fields. For the implementation of this
method several techniques have been applied ([23, 8, 26, 25]). In multiple static collimation the leaves
are moved only in a series of discrete steps and the radiation is always interrupted during the motion of
the leaves ([2, 28, 12, 13]). Each field is, then, divided in a series of discrete subfields with own static
MLC configuration for each subfield.

In this study, our aim is to introduce an approach for the control of the multileaf collimation which is
based on the use of an explicit (physical) objective function where the decision variables are the locations
of the leafheads or closely related to them . This enables us more easily to determine the real restrictions
which the multileaves must satisfy. The modelling is based on the use of modified Heaviside function (cf.
[2, 14]). The model does not take into account the so called ” groove and tongue effect” ([30]) and the beam
divergence. The result is optimal in a sense that the method minimizes the chosen objective function.
Here our main interest lies in the multiple static collimation. The method is, however, applicable also to
dynamic treatment schemes. The optimization of leaf trajectories with this method is a large dimensional
constrained multiextremal problem. We have applied the optimizing algorithm built into the Lipschitzian
global optimization (LGO) program (][21, 22, 20]) to solve the problem. In addition we have used local
optimization algorithm, Hooke-Jeeves iteration.

2 Mathematical model for leaf position control

2.1 Model without head scattering

We assume that the intensity distributions of fields are given. It suffices to consider one field since the
precalculated intensity distributions of separate fields are independent of each other. Let the collimator
plane (treatment head) be a rectangle U = [—a,a] x [~b,b] C R”. Denote the point of U by u = (u1, us).
The collimator leaves are orthogonal to the us-axis.

The leaves have a positive width d. Assume that there are N leaf pairs (B;, 4;), i = 1,...,N. This
means that 2b = Nd. Let U; := [—a, a]x]uz,i—1,u2,4[, ¢ = 1, ..., N be the strips (along u;-axis) determined
by the leaf pairs (B;, A;). Figure 1 explains more in detail these notational conventions.

Let U = ¥(u) be the prescribed intensity distribution (related to the monitor unit distribution).
We assume that ¥ is a piecewise continuous function U — R such that ¥(u) is constant ¥;(u;) for
U2 €lugi—1,us,;[ that is, ¥(u)=¥;(u1) for u € U;. This will be e.g. the case when in the calculation of
intensities (in the inverse problem of treatment planning) we subdivide the treatment domain into bixels
in such a way that the partition points in us- direction are exactly the points us ;.

Let ¥q be the uniform flux density per unit area incident on the MLC.

The leaf control problem can be stated as follows:

Problem A. Suppose that U is given. Let T' be a positive number (the total treatment time) . Let
the right hand head of leaf A; be in a point a;(t) € [—a,a] at the moment t and let the left hand head of
leaf B; be in a point b;(t) € [—a,a] at the moment t.

For anyi =1, ..., N determine the leaf trajectories a; = a;(t), b; = b;(t) such that there exist a finite
number of time intervals AT; C [0,T], j =1, ...,ny,,; for which

Nuy,i

Z ‘I’0|ATJ| = ‘I’i(ul)a i=1,..,N, (1)

i=1
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Figure 1: The geometrical setting of the treatment head. The number of leaf pairs is N = 8. A; is the
right hand leaf and B; is the left hand leaf.

bi(t) <wi < ay(t), ¢ € U ATy (2)

uy < bi(t) or uy > ag(t) t € [0,T]\ UG} AT;, (3)
bi(t) < ai(t), t€0,T], (4)

—a < bi(t) and a;(t) <a, t€[0,T]. (5)

The above criteria (1-3) for the trajectories a; and b; means that the total time during which the field
is open at the point 4 € U will exactly be the prescribed value ¥;(u;)/®y, as desired. The criteria (4-6)
are needed since the leaves can not overlap and the values of a;(t) and b;(¢) are limited to the interval
[—a,a]. In practice there may also be some other limitations for the leaves which can be added to the
above restrictions (cf. section 3.3). We remark that our assumption here is that the number n,, ; is
finite. The figure 2 will visualize the evolution of leaf heads for one particular leaf pair (B;, A;). The
time intervals where the field is open at u; € [—a, a] are marked in Figure 2.

We shall formulate the stated problem in a more compact, analytical way. Let H : [—a,a] — R be

the Heaviside function
1, >0
Hz) = { 0, z<0°

Then we see that

o) - )it -u0) = {7 HOSmEn

Hence we observe that (see figure 2)

Nuy i

T
/0 H(ai(t) — w)H(uy — bi(t))dt = Y |ATy], (6)

=1

where ATy, j =1,...,ny,,; are the subintervals of [0, T] for which the conditions (2) and (3) are valid (in
Figure 2 the number n,, ; = 2).
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Figure 2: At right: Evolution of leaf trajectories when they are step functions. At left: The corresponding
intensity distribution in the case where o= 1. For example, at u} (marked in the picture) ¥;(u;) is the
sum of the lengths of dashed lines.

Hence we are able to reformulate the leaf control problem as follows:

Problem B. Suppose that U is given as in Problem A. Let T be a positive number (the treatment
time) . For any i =1,...,N determine the leaf trajectories a; : [0,T] — [—a,a], b; : [0,T] — [—a,a] such
that

\1/0/0 H(ai(t) — un)H(us — bi(8))dt = Ti(wr), u € Us (7)

and

bi(t) < ai(t), t €[0,T]. (8)
Denote T
gz, bi) () = g /0 H(ax(t) — wn) H(ur — bi(t))dt.
Then the equation (7) can be written as
q(a;, b;)(u1) = ¥i(ur), v € Us. (9)
Remark 1 A. Since for the Heaviside function (for x1 > x2)
H(zy —z)H(z —z2) = H(z1 —x) — H(zo — )

we can rewrite the integral g(a;,b;)(u1) as

q(ai, b)(u1) = ‘1’0/0 [H(a;(t) —u1) — H(bi(t) — u1)]dt.

This substitution can be approzimately also made in the context of the corrected model considered below.
It may simplify the computations.

B. In the above problems the minimization of the treatment time T is also important, besides the
determination of the trajectories.



2.2 Model correction due to head scattering

The above model assumes that the leaves do not produce scattered radiation and that there is no leakage
through or between the leaves. In practice there exist scattering and leakage in the leaves and so the
Heaviside function must be replaced with a modified (steplike) function. These effects are possible to
take into account in the modelling. We shall consider model corrections (for Problem B) due to scattering
and leakage here.

We can replace the Heaviside function e.g. by one of the functions

H(z) = erf,(z) = ﬁ /f eI s (10)
. I:I(a:) =Ci + C’2mtan(03x) (11)
> H(x) = C1 + C(1 — tanh(Csz)). (12)

Such replacements of the Heaviside function yield some more ”soft” function which takes into account the
head scattering from the tops of leaves in the modelling. In addition, leakage through the leaves can also
be modelled with this substitution. By choosing the modification H(z) appropriately, the computations
become simple. The parameters C, C3, Cs can be obtained by standard interpolation techniques by
using (measured or Monte Carlo) data that takes into account the scattering. The equation (9) is, hence,
replaced by

(j(ai,bi)(ul) = \Ifi(ul), u € U;

where

T ~ ~
d(as, by)(u1) = ¥o /0 H(ai(t) — w)H (uy — bit))dt. (13)

In the following we correct the model due to the scattering from the leaf sides (and due to the ”groove
and tongue effect” which is not considered here). Let s = s(u2) be the ”portion of the scattered radiation”

s=H—H. (14)

Denote

s1(ai, b;)(w) = Vos(ug — qui)/O [H(u1 — ai+1(8))H(a;i(t) —ur)
+ H(bit1(t) —uwi)H(ug — bi(t))]dt, i=1,..,N -1

so(az, b;)(u) = Wos(ugi—1 — uz)/o [H(a;(t) —u1)H(u1 — a;—1(t))
+ H(uis — bi(t)H(bi—1(t) — u1)]dt, i =2,...,. N

83(0,1, bl)(u) = ‘I’os(uz,o — Uz) /0 H(a1 (t) — ul)H(ul — bl (t))dt,

T
sq(an,bn)(u) = ¥os(ug — U27N)/0 H(an(t) —u1)H (u1 — by (t))dt.
Let s(a;,b;)(u) be a function

sl(al,bl)(u)+53(a1,b1)(u), u e U1
s(a;, b;)(u) =  s1(as, b;)(u) + sa(ai, bi)(u), wel;1=2,.,N-1.
sa(an,bn)(u) + sa(an,bn)(uw), uw€Un

Then in the corrected model we replace (9) by the equality
G(ag,b;)(u1) + s(a;, b;)(u) = ¥i(uq), €ewel;, i=1,..,N. (15)



Remark 2 In the above formulas of si(a;,b;), k =1,2,3,4 we can (in practise) replace the pure Heavy-
side function H by the approximation
H(z) = erf () (16)

where € is small.

The above model is valid only, when the leaves are not too near to each other, or when the leaves
are closed. Modelling of leaf tops causes problems when the leaves are very near to each other. This
limitation can be removed, but we do not consider the correction here. Besides we consider an additional
constraint

ai(t) - bl(t) > 7 or ai(t) - b,(t) =0 (17)
where 7 is a positive number (between 0.5—1 cm). Since a;(t) —b;(t) > 0 the constraint (17) is equivalent
to

(ai(t) — bi(t))(ai(t) — bi(t) —=7) = 0. (18)

3 An optimal solution for the leaf control problem

3.1 Calculation of intensity

We shall assume that the leaf trajectories are given by the linear combinations

ai(t) = aindn(t), (19)
k=1

bi(t) = > birok(t) (20)
k=1

where {¢1, ..., ¢, } is an appropriate basis system of piecewise continuous functions.

In the following, for simplicity we shall neglect the correction term s(a;,b;)(u). Instead, we shall give
some results also for the corrected model. Substituting the expressions (19-20) in the integral (13) we
obtain

d(ai, b;)(u1)

T n n
‘I’o/ H (Z aikdr(t) — Ul) H (U1 -3 bik¢k(t)> dt
0 k=1 k=1

T
/0 Q;(u,t)dt (21)

where we denote for u € U;

Qi(ul,t) = \I/0f{ (zn: a,—kqﬁk (t) — ul) ﬁ <u1 — zn: bik¢k(t)> . (22)
k=1

k=1
Denote _
@i = (@1, -, Gin)s by = (bir, ..y bin)-
and
~ T
q(@;, b;)(u1) = / Qi(uq,t)dt. (23)
0
Then, by (21), we have _
i(u1) = q(@;,b;)(u1). (24)



3.2 Multiple static collimation

Multiple static collimation means that corresponding to each field S;, | = 1,..., L the treatment time
interval [0,7;] is divided into n; subintervals

[tio, tin], - [tini—1) s timg)-

During each subinterval the leaf configuration is fixed. So the whole treatment time will be greater than
Ty + ... + T; since the change of the leaf configuration corresponding to the subinterval [t;x_1),%] to
the leaf configuration corresponding to the next subinterval [tx,(r+1)] takes time. Also the change
of field configurations will take time. The leaf configurations which correspond to the subintervals
[tuk—1), tie], k =1,...,n are called subfields of the field S;.

As mentioned above it suffices to consider only one individual field S. In the multiple static treatment
technique the basis functions ¢ can be chosen to be step functions. Let {to, ...., ¢, } be a partition of the
interval [0,T] and let xj be the characteristic function of the subinterval [t;_1,%x], k =1,...,n, that is

L, tE [tg—1,tk]
Xi(t) = {0, otherwise

We choose ¢ = xk.
Since a; (t) = aik, bir(t) = by, for t € [ty_1,tx] we find that

- T ~ ~
q(ai,bi)(ul) = ‘1’0/0 H (ai(t) - Ul) H (u1 - bz(t)) dt

= T / H (ai(t) — ur) H (uy — by(t)) dt

k=1" k-1

= \I/(] i fI(aik — ul)fI(ul - b;k)(tk —_ tkfl). (25)
k=1

Remark 3 The practical interpretation of parameters a;i, by, is that the tops of the i*" leaf pair (B;, A;)
corresponding to the k™" subfield of the field S are at points a;; and byy,.

The above observation shows that in multiple static collimation the lengths §t; := ¢t — tx_1 of the
subintervals [tr_1,tk] can also be chosen as variables in the optimization processes. From a practical
point of view this possibility is very desirable because this degree of freedom will decrease the number of
subfields and hence the total treatment time. Thus we replace the quantity ¢(@;, b;)(u1) by

q(@i, bi, 6t)(u1) := Vo Y H(ask — wr)H (u1 — bix)Sts (26)
k=1

where 6t := (dt1, ...,0t,) € R™. The intensity ¥; can be computed from

;(uy) = q(@;, b, 6t)(w1), u € Uj. (27)
For the corrected model one obtains
U, (u1) = q(@;, bi, 6t)(u1) + s(@;, b, 0t) (u), u € U; (28)
where s(a@;, b;, dt)(u) is given by
s1(@y, by, 6t)(u) + s3(ar, by, 0t) (u), uely

S(aiagiaét)(u) = Sl(ai;b@ 5t)(u) + SQ(Eiabiaét)(u)a u € Uia 1= 2; 7N —-1. (29)
sa(an, by, 0t)(u) + sa(an,bn,0t)(u), uw€Un



In (29)

n
Wos(ug — uz,i) Z[H(ul — agit1)k)H (@i — u1)dty
k=1
+  H(bipnyr — u1)H(ur — big)dtg],

Sl(ai, E,', (5t) (u)

59(@;, bi, 0t)(u) = Wos(ug,; — us) Z[H(aik —u1)H (w1 — ag—1)r)0tk
k=1
+  H(ur — big) H (bii—1)r — u1)0t],

S3 (61,51,(5t)(u) = lIJOS(UQ 0— U2) Z H(alk - ul)H(ul - blk)étk,
k=1

54(6N,5N,5t)(u) \1’05 Uz — U2, N ZH ANk — U1 H(U1 — ka)(Stk
k=1

3.3 The optimization problem for multiple static collimation

From (27) we are able to compute approximately the intensity ¥; when H(z) is suitably chosen. The
optimization is based on the minimization of an error (objective) function

N
> lla(@,bi, 66)() - Wi (30)

with respect to (a@;, b;, 6t) € R®*". Here the norm may be e.g. the Ls([—a, a])-norm or some corresponding
discrete norm. Denote

(a,b,6t) = (@1, ..., AN, b, ..., b, 6) € RZN+1,

The objective function f: R**V*% » R used in the optimization is given by

f(a,b,dt) = leq ai, bi, 6t) () — ¥y |*. (31)

The constraints of Problem B can be computed. Since a;x(t) = aix, bix(t) = bix, for t € [tp—1,tx] and
0 otherwise the constraints of Problem B are equivalent to the following conditions

bir <aj, 1=1,...N, k=1,...,n (32)
aijr<a, by >—a,i=1,..,.N, k=1,..,n (33)
In practice one sets some additional conditions such as
a;(t) > —k and b;(t) <k, i=1,..,N

for all ¢ € [0,T]. Here k is a given positive number. This limitation brings in the following constraints
for the leaf parameters
air > —k and by, <k, i=1,..N, k=1 ..n (34)

In addition a natural requirement is
0<6t, <T (35)

In practice it is sensible instead of (35) to prescribe

C()S(stkST 0r5tk:O
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Figure 3: A schematic figure of some of the leaf constraints. Leaf pair 1 shows the leaf overlapping
condition, the left leaf of pair 2 shows restricted movement over field central axis (), pairs 3 and 4 (also
pairs 1 and 2) show the first interleaf condition and pairs 5 and 2 show the second interleaf condition (7).

where ¢g is a positive number. By this we avoid too short subfields. This constraint is equivalent to
0 <6ty <T, 6t (ot — o) > 0. (36)
From (18) we obtain the constraint
(a;(t) — bi(t))(as(t) — bi(t) —7) > 0
which means in multiple static collimation the restriction
(aik — bir)(amk — by —7) > 0. (37)
Applying certain treatment units we shall require some interleaf conditions such as
ai(t) —a;(t) <7 and b;(t) —b;(t) <7, i,j=1,..,.N (38)

and
bi(t) < aita(t), bipa(t) <ait), i=1,..,N -1 (39)

for all ¢ € [0,T] where «y is a positive number. These conditions lead to the restrictions
aip —ajr <7y and by —bjp <7, 4,5=1,...,N, k=1,..,n (40)

and
bik < agriyr, batnr L@k, i=1,.,N—-1, k=1,...,n. (41)

The constraint (39) is used to diminish the so called ”groove and tongue” effect.
In some delivery techniques one demands the uni-directionality of the leaves. For example, if the
leaves may move only from left to right we must set the constraint

air, < ik41), bik < bikgry, 1=1,..., N, k=1,..,n—1. (42)

In the following formulations we take into account only the conditions (32-37). Then the number of
constraints is 6 Nn + 2n.

Applying the above concepts we are able to formulate different kinds of optimal solutions. As an
example we consider the following possibility.



Define an objective function

N
f(a’ba (St) = Z ||q(ai’ bi, Jt)() - \IJ’i”%Q([—a,a])
i=1
Find the global minimum
min f(a,b,dt)
(a,b,dt)ER2nN+n

under the constraints (32-87), that is
bit < aig, i=1,.,N, k=1,..,n
airk < a, bijp>—a,1=1,.,N, k=1,...n
air > —K, bpy <k it=1,..,N, k=1,...,n
(ai — bir)(ag, —bixg —7) >0, i=1,..,N, k=1,..,n
0< 6t <T,
tr(dty —co) >0, k=1,...,n

In the corrected model the objective function must be replaced by

f(a,b,6t) = |lg(@1,b1,0t) + s1(a1, b1, 0t) + s3(@r, b1, 6t) — 1|7, 1)
N-1 _ _ _
+ ) lla@i, bi, 6t) + 1(@i, by, t) + 55(@i, bi, 6t) — W], 01
=2

+ lg@n,bn, 6t) + s2(an, by, 8t) + sa(@n, by, t) — Un|[7, 1y

The norm may be, as in (51) the || ||z,(v;)-norm or some corresponding discrete norm in Uj.

3.4 Change of decision variables
In the optimization it is useful to introduce new decision variables d;; and c¢;;, by
dix = a+ bix, cir = aix — bi.

Then we have
bir = dix —a, ajp = Cip +bix = Cix +dix —a

and so the objective function (43) is replaced by
F(c,d,6t) = f(c+d —a,d — a, t)

where
¢ =(C1y..,CN), Ci = (Cily s Cin)
d=(di,..,dn), di = (di1, ..., din)
a=(a,..,a) € RV,
The constraints (45-50) are replaced by the following inequalities
0<cit <2a

0<dit <2a
cir, + dix, < 2a

10

(51)

(52)

(53)
(54)



a—k<cip+dip <2a (55
0<dir <a+k (56

—
ot
~J

)
)
cik(cik —7) >0 )
0< 4ty <T, (58)
Sty (6t — co) > 0. (59)

Also the other above expressed constraints can be easily given with the help new decision variables.
Here (52, 53, 56, 58) are box constraints. The remaining constraints (54, 55, 57, 59) are handled corre-
spondingly by the following penalty terms

N n
Z Z(maX(O, cit, + di, — 2a))? (60)
i=1 k=1
N n n
Z Z(maX(O, a—k— (cix +dir)))”, Z(max(oacik +dix — 2a))? (61)
i=1 k=1 i=1 k=1
D> (max(0, —cik (cir —7)))” (62)
i=1 k=1
> (max(0, =5tk 5tk — co)))” (63)
k=1

where p is a positive number (e.g. p = 1 or p = 2). The penalty functions (60-62) have been added to
the objective function F'. Similarly we can handle the constraints for the original decision variables in
Section 3.3.

4 Optimization algorithm

Nowadays most of the treatment units allow use of 40 MLC leaf pairs but in practice, the number N of
leaf pairs is typically 20 — 25. Assuming that the number n of subfields, is between 5 — 15 we find that
the number of optimization parameters is between 2nN + n = 205 — 765 . The number 6 Nn + 2n of
constraints is between 610 — 2280. Some additional constraints are often imposed which will increase the
number of constraints. Hence the optimization problem is a large scale global optimization problem. The
constraints are mainly simple linear inequality constraints (the exceptions are (48), (50)). The objective
function f is defined in a subset of R2V"*" and it is nonlinear.

For the determination of the global minimum of the objective function, the LGO program ([20, 21, 22])
was used. LGO is an integrated software package including both global and local search strategies. It is
primarily developed for solving Lipschitz-continuous global optimization problems. In the user interface
of the program, the objective function and the explicit constraints can be defined in a Fortran 90 coded
user function file. Ranges for the variables and some termination criteria for the searches can also be set
by the user. In the global phase, two search strategies, branch and bound and adaptive random search,
are available. The branch and bound search is more structured and has a built-in deterministic strategy.
However, both strategies use random search elements. In the local search phase, either unconstrained or
constrained local search solvers are available.

A deterministic local optimizer was also applied. The algorithm was Hooke-Jeeves direct search
method [17]. A local optimizer needs a good initial solution if global optimum is desired. An ad hoc
method for setting the initial point was applied (Figure 4).

11
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Figure 4: Illustration of the method to find an initial point for local optimizer for one leaf pair.

5 Numerical experiments

In this study, we use the noncorrected model for the experiments. The objective function can have various
explicit forms like

2

f(a,b,dt) = Z/ \IIOZerf air, — ur)erf (up — big)dty, — Ui(u1)| dus, (64)
k=1
N a n 2

fla,b,d) = /_ o 3 (erf, (aik — ur) — exf, (b — un))dts — Ui(ur)| dus (65)
fla,b,dt) = > / ’ |Wo Y [C1 + Caarc tan(Cs(aix — u1))] (66)

i=17Y " k=1
[Cl + Cgmtan(Cg(ul - bik))]étk — \Ili(ul)|2du1. (67)
f(a,b,dt) Z / |To Y [C1 + 0—(1 — tanh(Cs (@i, —u1))] (68)

k=1

[Cl + g(l — tanh(C3 (ul — b,’k))](stk — \Ill(ul)| du;. (69)

2

In our experiments, we have used the discrete counterpart of the latest form of the objective func-
tion.The leaf side scattering was neglected.

The problem used in the experiments was a 35-variable 45-constraint test problem. In the problem,
there are three leaf pairs and five subfields. The leaf collision constraint (45) and edges of the field (46)
were explicitly determined as constraints in the problem. Also the constraints (47 - 50) were explicitly
determined. We made runs both with original decision variables and with the new decision variables
given in Section 3.4. The predetermined intensity distributions were a simple example where the field was
divided to area of zero intensity and to a rectangular area of uniform intensity of value 9. This intensity
distribution corresponds to a conventional open field and is called an open field like distribution. This
distribution was used to confirm that our method basically works, since the optimal solution of MLC

12



Predetermined intensity LGO intensity

10

Intensity level
Intensity level

20

Leaf pair

0

Figure 5: The predetermined (left) and the optimized (right) intensity distribution corresponding to open
field like distribution.

trajectories for this intensity distribution is trivial. Also a more difficult distribution having two separate
intensity peaks with low intensity between them was used. The two peak intensity distribution is an
arbitrary, but more realistic distribution in intensity modulated radiation therapy. In this study it was
used to simulate a real situation in optimization. The distributions are presented in figures 5 and 6 as
references.

The optimization of MLC parameters to match the open field distribution was successful. The re-
sults varied a little between the experiments, but the best solution very accurately corresponded to the
predetermined distribution (Table 1). The mean intensity difference was 0.042 units, when the intensity
ranged between 0 and 9.0. The results of the experiment are presented in Figure 5.

In the optimization problem using two peak intensity distribution, finding of the MLC parameters
corresponding to the desired distribution more difficult. Figure 6 indicates the results of this experiment.
The optimization program is capable to find a solution, where both peaks exist, but the resulting dis-
tribution only coarsely follows the predetermined.The mean intensity difference is 0.595 in the intensity
range of 0 — 9.628, but the difference between resulting and predetermined intensies ranges from -3.310
to 1.677. Concerning the two peak intensity distribution we made also some other simulations which
showed the uselfulness of the global search.

For the latter problem the Hooke-Jeeves local optimizing strategy was also applied using four subfields.
The mean intensity difference is 0.430 in the intensity range of 0 — 9.628, but the difference between
resulting and predetermined intensies ranges from -1.623 to 1.123 (Figure 6).

6 Discussion

In this study a new approach was introduced for optimization of the multileaf parameters during intensity
modulated radiation therapy. The method is basically a multipurpose algorithm, which can be applied to
different intensity modulation techniques.In this study, the method was applied for optimization of multi-
leaf parameters of two predetermined intensity distributions using multiple static collimation technique.
For the optimization, LGO (]20, 21, 22]) was used. The optimization program finds MLC parameters
corresponding to a dose distribution of open field very accurately. For intensity distribution with two
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Figure 6: The predetermined (left), LGO optimized (middle) and Hooke-Jeeves optimized (right) intensity
distributions corresponding to the two peak distribution.

maximums, finding suitable solutions is apparently more difficult.

For the inverse treatment planning, different algorithms have been developed. One of the simplest
approach is to optimize weights for the prescribed fields to get the best available dose distribution to the
target, simultaneously keeping the normal tissue dose below a tolerance level ([29]). In the more compli-
cated problems, in treatment delivery of intensity modulated radiation therapy, the problem is usually
divided into two parts, finding optimal intensity distribution for each field to obtain the desired dose
distribution in the patient and determining the multileaf trajectories based on the intensity distribution.
In this study, our approach was introduced in the latter purpose, the multileaf parameters were optimized
for two predetermined intensity distributions. However, our approach can be extended towards the direct
optimization of multileaf parameters in order to match a desired dose distribution in the patient domain,
without optimizing at first the intensity distribution.

We have used multiple static collimation, where leaves are moved only in discrete steps between
the subfields and the radiation is interrupted during the motion. One of the advantages to use this
technique is the easier control of leaves, since the limited velocity and acceleration of the leaves need
not to be accounted. On the other hand, disadvantage is that it may prolong the total treatment time.
Our method is, however, applicable also for the dynamic collimation, where leaves are moved during
the dose delivery continuously corresponding to each individual field. In the implementation of the
dynamic collimation, different techniques are used. Practical implementation of dynamic collimation to
our method will produce additional restrictions, such as maximal acceleration and velocity or possible
unidirectionality of the leaves, which have to be added to the constraints.

Optimization of a dose distribution in a patient is normally based either on physical or on radiobi-
ological criteria. ( [10, 24, 29, 5, 6]). Regardless of the criteria used, the problems are normally large
dimensional problems with multiple local minima ([10]), similarly to our problem in which MLC param-
eters were optimized for a predetermined intensity distribution. Therefore, algorithms capable for global
optimization are strongly recommended. Nowadays there are effective special tools such as stochastic
global optimization, deterministic branch and bound techniques and different kinds of regularization
methods to solve reliably this kind of problems. We have used LGO ([20, 21, 22]) for the optimization.
LGO integrates a suite of robust, derivative-free global and local optimization strategies.
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Numerical results in 35-variable 45-constraint problem are excellent in a very simple open field like
distribution. The resulting intensity distribution follows very accurately the predetermined distribution.
This problem is a rough simplification of the optimization needed in the intensity modulated radiation
therapy. However, it shows that the method developed in this study basically works. When the method
is applied to more complicated dose distribution, e.g. the two peak distribution, the resulting intensity
distribution only coarsely follows the predetermined intensity distribution. This may, naturally, follow
from the difficulties of the optimization program to find the real global minimum of the objective func-
tion. According to our experiences, after the formulation of the new decision variables (Section 3.4) the
optimization results were better. It may be that improving the formulation of the problem will still lead
to better results. Another question is, whether five subfields are enough to fulfil such a difficult dose
distribution. The optimal number of the subfields is a matter of future research, too (not necessarily the
smallest number, cf. [28]). Finally, our present model neglects the so called ’tongue-and-groove problem’
([30]). In future this effect will be added to the model.

With the Hooke-Jeeves local optimization method a slightly better solution was obtained in the two-
peak experiment (Figure 6). The problem is, as always with local optimizers, the determination for the
initial point. Although our scheme seems to be working in this case, further development of strategies to
determine the best initial point is necessitated.

In conclusion, this study introduces a new algorithm for the optimization of the MLC parameters
in intensity modulated radiation therapy treatment. The simple test problem optimization shows the
applicability of the algorithm, but in optimization of the more complicated problem difficulties exist.
It indicates that more research is needed in the field of optimization methods and problem dimension
determination, especially in finding the ”best suitable” number of the subfields. We conclude that this
approach is worth development for wider use in the field of intensity modulated radiation therapy.
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