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Abstract

The Hardest Context-free Language L0 is one context-free language (cfl) from which
any cfl may be obtained by an inverse homomorphism [Gre73]. One key of proving that the
Hardest Context-free Language L0 exists is that every cfl L can be generated by a context-
free grammar (cfg) G in Greibach Normal form (GNF) so that L � L

�
G � [Gre65].

We present a new proof of the well-known result given in [Gre73] using the new
method of transforming a cfg into 2-Greibach Normal form (2-GNF) in O

���
G

� 3 � presented
in [BK99]. Revising the proof of the existence of L0 enables us to predict the length of pairs
of sentential forms. The result is that a pair of sentential forms sk and sk � 1, k � 1, S : � s1,
organized in blocks of “xicyiczid”, 1 � i � n, for generating L0 have an upper bound and
a lower bound in their length (if λ �	 L); where

�
sk

�
and

�
sk � 1

�
are the length of a pair of

sentential forms, then it holds
�
sk

� � �
sk � 1

� � �
sk

��

2.

Classification: F.4.3
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1 Introduction

We present a new proof of the well-known result given in [Gre73]. One key of proving
that the Hardest Context-free Language exists is that every cfl L can be generated by a cfg
G into GNF so that L � L  G � [Gre65]. A new method for transforming a cfg into 2-GNF
is presented in [KB97, BK99]. The transformation method produces a 2-GNF in O �� G � 3 � .
Whereas the length of the righthand sides of a rule in set of rules P were unknown in the
’classical GNF’ [Gre65], we know that these are restricted by transforming a cfg into 2-
GNF. Of course, this fact has an impact on the construction of the Hardest Context-free
Language. A pair of sentential forms sk and sk � 1 organized in blocks “xicyiczid”, k � 1,
S : � s1, for generating L0 have an upper bound and a lower bound in their length. If � sk �
and � sk � 1 � are the length of a pair of sentential forms, then it holds � sk ����� sk � 1 ����� sk ��� 2.

In Sec. 2 we give the basic notations, definitions and well-known results. Different kind
of GNF’s are defined in Sec. 2.1. Semi-Dyck languages and their properties are introduced
in Sec. 2.2. The definition of the Hardest Context-free Languages is given in Sec. 2.3. The
new proof based on a 2-GNF is given in Sec. 3. Observations and properties derivated by
the new proof are listed in Sec. 4. In Subsec. 4.2 our main result, Theorem 4.1, follows the
Corollaries 4.1 and 4.2, as presented in Sec. 4.

2 Preliminaries

Let G �� N � T � P� S � be a Chomsky-grammar, where N is a finite, non-empty alphabet of
nonterminals, T is a finite, non-empty alphabet of terminals, P is a set of rules (or pro-
ductions), and S � N is a start symbol. The G is context-free, iff all rules r � P are of the
form r : p � q, p � N ( � p ��� 1), and q �� N � T � � . Let G �! N � T � P� S � be a cfg and let
u "#� v "$�% N � T � � . It is said that u " directly derives v " , written u "'& v " , if there exists u1 � u2 � v � N � T �(� and A � N, such that u " � u1Au2, v " � u1vu2 and A � v � P. We write &�� for the
reflexive and transitive closure of & . The language generated by a grammar G is defined
by L  G �)��* w � T ��� S &+� w , . A language L, generated by a cfg with L � L  G � , is called a
context-free language (cfl) [Cho59, Sal73, Har78]. If L is a clf, then init  L �-�.* u � uv � L for
some T �/, . If w � L  G � , then the sequence S & s2 &10(0(0�& si &20(0(03& sn � w, 1 � i � n,
is a derivation of the word w and the si’s are called sentential forms, where S is also a
sentential form indexed by 1. We define a norm 4 G 4 on rules of a cfg G �5 N � T � P� S � .
Let 4 G 4 be the longest righthand side of all rules r in P so that the norm is defined as4 G 4 : ��* max  q �/� p � q � p � N �� p �/� 1 � , and q �6 N � T � � for all r � P , .

2.1 Greibach Normal forms

A cfg G �7 N � T � P� S � is in Greibach Normal form (GNF), iff it contains only rules of the
form A � aα, where a � T and α �� N � T � �98 * S , . If λ � L, then it is S � λ in P. Every
cfl L may be generated by a cfg G in GNF so that L � L  G � [Gre65, Har78].

Definition 2.1. A context-free grammar G �: N � T � P� S � is in 2-Greibach Normalform (2-
GNF), iff the set P contains only rules of the form
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A ; a a < T,
A ; aB1 a < T, B1 < N =?> S @ ,
A ; aB1B2 a < T, B1 A B2 < N =?> S @ , and
S ; λ.

Using N. Blum’s and R. Koch’s transformation method presented in [KB97, BK99], we
know that every cfg G can be transformed in O B�C G C 3 D into a 2-GNF G E so that L B G DGF L B G E D
holds. A number of parsing properties of G E have been studied by [Sto98].

2.2 Semi-Dyck Languages

The following definitions and notations are taken from [Har78], if not otherwise indicated.
An algebraic characterisation of any cfl is obtained on the semi-Dyck set, which is

a particular deterministic context-free language1 (dcfl). The terminal alphabet of Dr, the
semi-Dyck set on r-letters, is B Tr H Tr

D , where Tr
F > a1 A(I(I(I A ar @ and Tr

F > ai C ai < Tr @ . We
define T F B Tr H Tr

D and consider T J which is a free (word-)monoid with λ as an empty
word. We may think of ai’s, 1 K i K r, as different kinds of left parenthesis, and ai’s,
1 K i K r, as their corresponding right parenthesis.

Relations on T J can be defined using ρ0
F >LB aiai A λ D C ai < Tr @ H >LB λ A aiai

D C ai < Tr @ . LetMF be the two-sided congruence relation that contains ρ0. Not only is
MF an equivalence

relation on T J but xaiaiy
MF xy for all i, 1 K i K r, and all x A y < T J . Inductively, if x A y < T J ,

then x
MF y, iff x can be obtained from y by introducing or cancelling adjacent pairs a iai or

vice versa. A word w < T J is reduced for Dr, if w contains no consecutive pairs aiai for any
i, 1 K i K r. Given any word over T J , we may reduce it by cancelling consecutive pairs.
The process of cancelling consecutive pairs can be defined in the following way

Definition 2.2. Let be T F B Tr H Tr
D for some r N 1. Define a mapping µ : T JO; T J as

follows

µ B λ DPF λ A
µ B xai

DQF µ B x D ai for each i A 1 K i K rA
µ B xai

DQFSR µ B x D ai if µ B x DUT< T J ai A 1 K i K rA
x E if µ B x DVF x E ai I

The function µ is helpful in dealing with and proving properties of a semi-Dyck set in
general. The following properties of µ are inherent. A proof of such listed properties is also
given in [Har78]. Let be T F Tr H Tr for some r N 1 and let be u A vA wA x A y < T J .

1The deterministic context-free languages are characterized by deterministic pushdown automata which accept
them [Sal73, Har78].
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(a) µ W xaiai XQY µ W x X for any i, 1 Z i Z r.
(b) µ W w X is reduced.
(c) µ W w X9[Y w.
(d) If u is reduced, µ W u X9Y u.
(e) µ W µ W w X(X9Y µ W w X .
(f) µ W xy XVY µ W µ W x X y X .
(g) µ W xy XVY µ W µ W x X µ W y X(X .
(h) If µ W x XVY µ W y X , then µ W uxv XVY µ W uyv X .
(i) µ W xaiaiy XPY µ W xy X for any i, 1 Z i Z r.
(j) µ W x X9Y µ W y X , iff x [Y y.
(k) Let be w \ T ] . If y \ T ] , y is reduced and y [Y w, then y Y µ W w X .

For generating a semi-Dyck set, we can define a cfg. Let r ^ 1 and define
Gr Y W Nr _ T _ P_ S X , where T Y Tr ` Tr, Nr Y�a S b , and the set of rules P is of the form

S c SaiSaiS
S c λ

for each i, 1 Z i Z r. Now, the semi-Dyck set is generated by Dr Y L W Gr X and the language
Dr is defined by Dr Y�a w \ T ]�d µ W w XPY λ b . Dr is a dcfl. Therefore Dr is unambiguous.

Some characteristics of the mapping µ : T ] c T ] can be overtaken to Dr. We list them
here. Check the proofs as they are presented in [Har78]. Let be Dr a semi-Dyck set.

(a) If x _ y \ Dr, then xy \ Dr.
(b) If x \ Dr, then aixai \ Dr for all i, 1 Z i Z r.
(c) For each word x \ Dr, either x Y λ or x Y aiyaiz for some i, 1 Z i Z r,

and some y _ z \ Dr.
(d) If aiaiz \ Dr, then z \ Dr.
(e) If yz \ Dr and y \ Dr, then z \ Dr.
(f) x \ init W Dr XQY�a w \ T ] d wy \ Dr for some y \ T ] b , iff µ W x X \ T ]r .

Cfl’s can be characterized in terms of Dr.

2.3 The Hardest Context-free Language

There is one cfl L0 from which any cfl L may be obtained by an inverse homomorphism.
That is, for L \ T ] , there exists a homomorphism φ so that L Y φ e 1 W L0 X . Any cfl can be
parsed in whatever time or space it takes to recognize L0. The definition of L0 is based on
the semi-Dyck set. Do not choose L0 Y D2, where D2 is deterministic and hence unam-
biguous. For any homomorphism φ, φ e 1D2 is unambiguous, and the generated language is
not inherently ambiguous, see Sec. 2.2. We have to choose the nondeterministic version of
D2 for generating L0 in the following way2

Definition 2.3. Let T Y�a a1 _ a2 _ a1 _ a2 _gfc _ c b . Define

L0 Yha λ b `ia x1cy1cz1d j(j(j xncyncznd d n ^ 1 _ y1 j(j(j yn \ fcD2 _ xi _ zi \ T ] for all i, 1 Z i Z n,
yi \ a1 _ a2 _ a1 _ a2 b'] for all i ^ 2 b

2This is one of the most important means for coding all cfl using L0.
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Note, that the xi’s and zi’s can contain c’s and kc’s.
The following theorem is well-known [Gre73]. We use the presentation as given in

[Har78].

Theorem 2.1. If L is a cfl, there is a homomorphism φ so that L l φ m 1 n L0 o if λ p L and
L l φ m 1 n L0 q?r λ s o if λ kp L.

3 The Hardest Context-free Language Revised

A key for proving the theorem 2.1 is that there is the transformation of a cfg into GNF
[Gre65, Gre73]. A new method for transforming a cfg G into 2-GNF G t in O n�u G u 3 o has
been published in [KB97, BK99]. We will renew the proof using the properties of a cfg in
2-GNF. Of course, this does not lead to a new theorem, but enables us to enlist some new
properties for parsing cfl.

3.1 A New Proof for Theorem 2.1

Let be L v T w and L l φ m 1 n L0 o , where φ m 1 is a well-defined inverse homomorphism as in
Sec. 2.3. The correctness of the Theorem 2.1 is proved in the following.

Let x lm be a relation – called leftmost derivation – defined by yAα x lm ywα, where
A y w is a production in P, α z w p n N { T o w and y p T w . Let γ1, γ2 p n N { T o w be strings,
then γ1 l yAα derives (directly) leftmost in γ2 l ywα in G using A y w p P and it is
denotated as γ1 x lm γ2. We write x.wlm for the reflexive transitive closure of x lm.

Let us start the new proof.

Proof There is still no loss of generality, if we consider that λ kp L (if λ p L, then it
holds L l φ m 1 n L0 o ). We assume, again without the loss of generality, that L l L n G o , where
G l n N z T z Pz S o is in 2-GNF, see Def. 2.1. Thus every rule ri in P is of the form (if λ kp L)

(i) A y aB1B2 A p N, a p T , and B1 z B2 p N q?r S s
(ii) A y aB1 A p N, a p T , and B1 p q?r S s
(iii) A y a A p N, and a p T

Let us index the set of nonterminals N as r A1 z(|(|(|�z An s , where A1 l S.
The idea of the construction is to encode rules of the given form of 2-GNF. The en-

coding includes only nonterminals, not terminals, because a nonterminal would allow to
generate a new subtree. Thus, when φ is defined on a terminal a, it will encode all possible
productions whose righthand side starts with a. Now, we have to define three mappings3

from P into T w .
(i) If rk is Ai y aiAi } 1Ai } 2 then τrk l a1ai

2a1a1ai } 1
2 a1a1ai } 2

2 a1.
(ii) If rk is Ai y aiAi } 1 then τrk l a1ai

2a1a1ai } 1
2 a1.

(iii) If rk is Ai y ai then τrk l a1ai
2a1.

3instead of two mappings in former times for rules of the form A ~ aα, where A � N, a � T and α ��� N ��� S �/�(�
[Gre65, Har78], because we have three types of rules as given above.
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To define τ, we recall that i is the index of the lefthand side and

i f i �� 1 then τrk
� τrk

else τrk
� �ca1a2a1τrk

Since τ and τ encode only the nonterminals in the rules and not the terminal, we let
P � �h� rp1 �(�(�(��� rpm � be the set of all rules whose righthand side begins with a � T .

We define the homomorphism φ by

φa � i f P �G�� /0 then cτ � rp1 �L�(�(� cτ � rpm � cd
else �c �c.

The following rewritten claim is the key of the proof and gives the exact correspondence
between the derivations in G and the structure of L0.

Claim [= Induction hypothesis] For each b1 �(�(� bk � Ti, Ai1 �(�(�(� Air � N � � S � , we have
that

S �.�lm b1 �(�(� bkAi1 �(�(� Air
under a sequence of rules rp1 �(�(�(� rpk , iff there exist xi � yi � zi, 1 � i � k such that

(i) φ � b1 �(�(� bk � � x1cy1cz1d �(�(� xkcykczkd
(ii) y1 �(�(� yk � init ���cD2 � ��� x � xw �U�cD2 for some w � T � �
(iii) µ � y1 �(�(� yk � � �ca1air

2 a1 �(�(� a1ai1
2 a1, where for each w,

µ � w � is a unique reduction word that can be obtained from cancellation
as it is given in Sec. 2.2.

It is enough to prove this Claim for showing the Theorem, because (ii) and (iii) hold, iff
y1 �(�(� yk �U�cD2; we have that w � L, iff there exists xi � yi � zi, 1 � i � k such that

(i) φw � x1cy1cz1d �(�(� xkcykczkd,
(ii) y1 �(�(� yk �U�cD2, and
(iii) y1

� rpi � T �2 for i � 2,

which only holds if w � L0 � � λ � .
Note, that using 2-GNF such rules are only of the form Ai � aB1B2 or Ai � aB1 as it

is defined in Def. 2.1. The righthand sides of such rules are limited so that we get a new
implication for the rules so that they are indexed by Ai � aiAi � 1Ai � 2 or Ai � aiAi � 1. This
means that we can (re)use the index i for describing a corresponce in the next substitutions
of the derivation process.

We prove the claim by induction on k.

Induction basis k � 1. We have to consider three cases dependently on the form of the
rule in 2-GNF.

Case 1 The derivation is A1 � a, where this rule is rpi .
Then applying τ to this rule gives τrpi

� �ca1a2a1a1a2a1. If P � �h� rp1 �(�(�(��� rpm � ,
we have φa � cτ � rp1 �L�(�(� cτ � rpm � cd � x1cy1cz1d. If we let y1

� τ � rpi � then
µ � y1 � � �c and so y1 � init ���cD � , and all properties of the claim are fullfilled. Con-
versely, if each part of the claim is satisfied, there must be a derivation A1 � a
and the Case 1 is verified.
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Case 2 The derivation is A1 � aA1 � 1 � aA2, where A2 � N �?� A1   , and the rule
is rpi . By definition τrpi �%¡ ca1a2a1a1a2a1a1ai

2a1. If P ¢ � � rp1 £(¤(¤(¤�£ rpm   then
φa � cτ ¥ rp1 ¦L¤(¤(¤ cτ ¥ rpm ¦ cd � x1cy1z1d satisfying property (i). As in (i), we let
y1 � τ ¥ rpi ¦ . Then µ ¥ y1 ¦ �%¡ ca1ai

2a1 satisfying property (iii). Surely, it holds
y1 � init ¥ ¡cD ¦ . Conversely, if each part of the claim is fullfilled, there must be a
derivation A1 � aA2.

Case 3 The derivation is A1 � aA1 � 1A1 � 2 � aA2A3, where A2 £ A3 � N �?� A1   , and
the rule is rpi . By definition τrpi �%¡ ca1a2a1a1a2a1a1ai

2a1a1ai � 1
2 a1. If P ¢ �� rp1 ¤(¤(¤ rpm   , then φa � cτ ¥ rp1 ¦L¤(¤(¤ cτ ¥ rpm ¦ cd � x1cy1cz1d satisfying property (i)

of the claim. As required in (i), we let y1 � τ ¥ rpi ¦ . Then
µ ¥ y1 ¦ �%¡ca1ai

2a1a1ai � 1
2 a1 satisfying property (i). Conversely, y1 � init ¥ ¡cD ¦ , sat-

isfying property (ii). And if each part of the Claim is satisfied, there must be a
derivation A1 � aA2A3.

Induction step (one direction of the proof) Assume the result for k § 1. Suppose we have
S �.l̈m b1 ¤(¤(¤ bkAi1 ¤(¤(¤ Air and let φ ¥ b1 ¤(¤(¤ bk ¦ � x1cy1cz1d ¤(¤(¤ xkcykczkd, where
µ ¥ y1 ¤(¤(¤ yk ¦ �%¡ca1air

1 a1 ¤(¤(¤ a1ai1
2 a1.

Case 1 Firstly, we check substitution only in terminals bk � 1.

Let yk � 1 � τ ¥ rp ¦ � a1ai1
2 a1 so that rp corresponds to Ai1 © bk � 1. Then it holds

φ ¥ bk � 1 ¦ � xk � 1cyk � 1czk � 1d.
We compute stepwise µ ¥ y1 ¤(¤(¤ ykyk � 1 ¦ � µ ¥ y1 ¤(¤(¤ yk ¦ µ ¥ yk � 1 ¦ , see Sec. 2.2. So

it is µ ¥ y1 ¤(¤(¤ yk ¦ µ ¥ yk � 1 ¦ � µ ¥ a1air
2 a1 ¤(¤(¤ a1ai1

2 a1a1ai1
2 a1 ¦ �%¡ca1air

2 ¤(¤(¤ a1ai2
2 a1, while

S � l̈m b1 ¤(¤(¤ bkbk � 1Ai2 ¤(¤(¤ Air , where Ai1 © bk � 1.

Case 2 Consider rules of the form Ai © biAi � 1. Let yk � 1 � τ ¥ rp ¦ � a1ai1
2 a1a1ai1 ª 1

2 a1

so that rp corresponds to Ai1 © bk � 1Ai1 ª 1 . Therefore is φ ¥ bk � 1 ¦ � xk � 1cyk � 1czk � 1d.
Apply µ ¥ y1 ¤(¤(¤ ykyk � 1 ¦ � µ ¥ y1 ¤(¤(¤ yk ¦ µ ¥ yk � 1 ¦ , cmp. Sec. 2.2, to

µ ¥ y1 ¤(¤(¤ yk ¦ µ ¥ yk � 1 ¦ � µ ¥ a1air
2 a1 ¤(¤(¤ a1ai1

2 a1a1ai1
2 a1a1ai1 ª 1

2 a1 ¦ �%¡ca1air
2 a1 ¤(¤(¤ a1ai2

2 a1,
while S � l̈m b1 ¤(¤(¤ bkbk � 1Ai2 ¤(¤(¤ Air , where Ai1 © bk � 1Ai2 .

Case 3 Now, we consider rules of the form Ai © biAi � 1Ai � 2. Let

yk � 1 � τ ¥ rp ¦ � a1ai1
2 a1a1ai1 � 1

2 a1a1ai1 � 2
2 a1 so that rp corresponds to

Ai1 © bk � 1Ai1 � 1Ai1 � 2. Reasonably, it is φ ¥ bk � 1 ¦ � xk � 1cyk � 1czk � 1d. By com-
puting µ ¥ y1 ¤(¤(¤ ykyk � 1 ¦ � µ ¥ y1 ¤(¤(¤ yk ¦ µ ¥ yk ¦ , Sec. 2.2, we receive µ ¥ y1 ¤(¤(¤ yk ¦ µ ¥ yk � 1 ¦ �
µ ¥ a1air

2 a1 ¤(¤(¤ a1ai1
2 a1a1ai1

2 a1a1ai1 ª 1
2 a1a1ai1 ª 2

2 a1 ¦ �%¡ca1air
2 a1 ¤(¤(¤ a1ai2

2 a1a1ai3
2 a1,

while S �.l̈m b1 ¤(¤(¤ bkbk � 1Ai2 ¤(¤(¤ Air , where Ai1 © bk � 1Ai2Ai3 .

On the other hand it is defined φ ¥ b1 ¤(¤(¤ bk ¦ � x1cy1cz1d ¤(¤(¤ xk � 1cyk � 1czk � 1d and it
holds µ ¥ y1 ¤(¤(¤ yk � 1 ¦ �U¡c � a1 £ a2  '¨ . By the construction of φ the only way in the Cases
1 to 3 for this to happen if it is µ ¥ y1 ¤(¤(¤ yk ¦ �%¡ca1air

2 ¤(¤(¤ a1ai1
2 a1 and if we check the

following property for the three cases independently.

Case 1 It holds µ ¥ yk � 1 ¦ � τ ¥ rp ¦ � a1as
2a1, where rp must be a rule As © bk � 1.

Case 2 In this case it is true that µ ¥ yk � 1 ¦ � τ ¥ rp ¦ � a1as
2a1a1ak � 1 � 1

1 a1 � a1as
2a1ak � 2

1 ,
where rp must be a rule As © bk � 1Ak � 2.

Case 3 We can construct
µ ¥ yk � 1 ¦ � τ ¥ rp ¦ � a1as

2a1a1ak � 1 � 1
1 a1a1ak � 1 � 2

1 a1 � a1as
2a1a1ak � 2

1 a1a1ak � 3
1 ,

where rp must be a rule As © bk � 1Ak � 2Ak � 3.
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The following fact is correct for all studied cases. But since µ « y1 ¬(¬(¬ yk  1 ®-¯U°c ± a1 ² a2 ³'´ ,
there must be some cancellation between µ « y1 ¬(¬(¬ yk ® and µ « yk  1 ® that is s µ i1.

By induction hypothesis S ¶ ĺm b1 ¬(¬(¬ bkAi1 ¬(¬(¬ Air and by using the properties of semi-
Dyck sets – as they are introduced in Sec. 2.2 – we have

in Case 1 S ¶ ĺm b1 ¬(¬(¬ bkbk  1Ai2 ¬(¬(¬ Air ,

in Case 2 S ¶ ĺm b1 ¬(¬(¬ bkbk  1Ak  2Ai2 ¬(¬(¬ Air , and

in Case 3 S ¶ ĺm b1 ¬(¬(¬ bkbk  1Ak  2Ak  3Ai2 ¬(¬(¬ Air .

Therefore the induction has been extended. ·
4 Observations and a New Theorem

In this Sec. 4 we study the implications inherent of the new proof. We list some observa-
tions before formalizing these in Cor.’s 4.1 and 4.2. Our main result, Theorem 4.1, follows
in Subsec. 4.2.

4.1 Our List of Observations

Obervation 1 Note, that using 2-GNF such rules are only of the form A ¸ aB1B2 or
A ¸ aB1 as it is defined in Def. 2.1. The righthand sides of such rules are limited
so that we get a new implication for the rules so that the corresponding productions
are indexed by Ai ¸ aiAi  1Ai  2 or Ai ¸ aiAi  1. That means that we can (re)use the
index i for describing a corresponce in the next substitutions of the derivation process.
Additionally, we get an information about the width of the next possible subtree. It is
also limited by maximal ¹ aiAi  1Ai  2 ¹ so that it is º G º»µ 3.

Observation 2 In the induction step we studied S ¶ ĺm b1 ¬(¬(¬ bkAi1 ¬(¬(¬ Air . The length of sen-
tential forms are limited, see Observation 1. If sk is the sentential form
b1 ¬(¬(¬ bkAi1 ¬(¬(¬ Air , we receive the studied three cases again. We get a new interest-
ing detail.

Case 1 is b1 ¬(¬(¬ bkAi1 ¬(¬(¬ Air ¶ lm b1 ¬(¬(¬ bkbk  1Ak  1Ak  2Ai2 ¬(¬(¬ Air ,
where Ak  1 ¸ bk  1Ak  2Ak  3.

Case 2 is b1 ¬(¬(¬ bkAi1 ¬(¬(¬ Air ¶ lm b1 ¬(¬(¬ bkbk  1Ak  2Ai2 ¬(¬(¬ Air ,
where Ak  1 ¸ bk  1Ak  2.

Case 3 is b1 ¬(¬(¬ bkAi1 ¬(¬(¬ Air ¶ lm b1 ¬(¬(¬ bkbk  1Ai  2 ¬(¬(¬ Air , where Ak  1 ¸ bk  1.

so that the length of the next sentential forms are

in Case 1 ¹ sk ¹'µ k ¼ r and ¹ sk  1 ¹½µ k ¼ 1 ¼ r ¾ 1 ¼ 2 µ k ¼ r ¼ 2 and we receive the
equation ¹ sk ¹/µ7¹ sk  1 ¹�¼ 2;

in Case 2 ¹ sk ¹-µ k ¼ r and ¹ sk  1 ¹-µ k ¼ 1 ¼ r ¾ 1 ¼ 1 µ k ¼ r ¼ 1 and it holds¹ sk ¹gµ¿¹ sk  1 ¹�¼ 1; and

in Case 3 ¹ sk ¹/µ k ¼ r and ¹ sk  1 ¹gµ k ¼ 1 ¼ r ¾ 1 µ k ¼ r and it is ¹ sk ¹/µ:¹ sk  1 ¹ .
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Observation 3 If we check the worst case of a longest (sub)sentential form using only
rules of the form Ai À aiAi Á 1Ai Á 2, we receive
Ai Â+Ãlm aiai Á 1 Ä(Ä(Ä ai Á kAi Á k Á 1Ai Á k Á 2Ai Á k Å 1 Ä(Ä(Ä Ai Á 2 : Æ αi Á k Á 1. This means that the gen-
erated word can not be shorter than Ç w ÇÉÈ i Ê 2k Ë 1, where k, k È 1. Note, that k
corresponds to the actual position in the recognized (sub-)word so that k divides the
word in the generated part of terminals aiai Á 1ai Á 2 Ä(Ä(Ä ai Á k and its unprocessed part of
nonterminals Ai Á k Á 1Ai Á k Á 2Ai Á k Å 1 Ä(Ä(Ä Ai Á 2. The length of the (sub)word is i Ê k. The
unprocessed part has the length k Ë 1.

Observation 4 For generating a terminal string of the length i, i È 1, over a cfg in 2-GNF,
we need at least i nonterminals, because each rule in P starts with a terminal a Ì T
(if λ ÍÌ L Î G Ï ). So if we look at a (sub)sentential form that is produced by applying
only rules of the form Ai À aAi Á 1, we get Ai Â Ãlm aiai Á 1ai Á 2 Ä(Ä(Ä ai Á kAi Á k Á 1 : Æ αi Á k Á 1.
There is a lower bound of a length of a new (sub)word that is still to process. This
bound is i Ê k Ê 1 (if it is λ ÍÌ L Î G Ï ).

Observation 5 Combining the observations 3 and 4, as given above, we consider that a
sequence of derivations with containing nonterminals αi Á k Á 1 is bounded. The size ofÇ αi Á k Ç is i Ê k Ê 1 Ð�Ç αi Á k Á 1 Ç�Ð i Ê 2k Ë 1 for each i, 1 Ð i Ð n, 1 Ð k Ð n, and i Ð k.

Observation 6 If i Ê k Ê 1 Ð7Ç αi Á k ÇÉÐ i Ê 2k Ë 1 then we can obtain that i terminals are
already generated, see also Observations 3 and 4. So it holds k Ê 1 Ð.Ç αk Á 1 Ç'Ð 2k Ë 1.
We consider two new bounds (for k Ê 1 Ë 1 Æ k). It is k Ð+Ç αk Ç/Ð 2 Î k Ë 1 ÏÉË 1 Æ 2k Ë 3
for k È 2.

The following Cor.’s 4.1 and 4.2 are directly derivated form the listed observations
above.

Corollary 4.1. Let L0 be the Hardest Context-free Language as defined in Def. 2.3 and
L a cfl generated by a cfg G Æ!Î N Ñ T Ñ PÑ S Ï in 2-GNF so that L Æ L Î G Ï . By encoding G in
L0 the length of a pair of sentential forms Ç sk Ç and Ç sk Á 1 Ç k È 1, for generating each block
“xicyiczid”, 1 Ð i Ð n, has an upper bound Ç sk Á 1 Ç�ÐhÇ sk Ç�Ê 2, where S : Æ s1 and Ç S Ç/Æ 1.

Proof The statement follows by Observations 2, 3 and 6 as given above. Ò
Corollary 4.2. Let L0 be the Hardest Context-free Language as defined in Def. 2.3 and L
(λ ÍÌ L) a cfl generated by a cfg G Æ:Î N Ñ T Ñ PÑ S Ï in 2-GNF so that L Æ L Î G Ï . By encoding
G in L0 the length of a pair of sentential forms Ç sk Ç and Ç sk Á 1 Ç k È 1, for generating each
block “xicyiczid”, 1 Ð i Ð n, has a lower bound Ç sk Ç�Ð�Ç sk Á 1 Ç , where S : Æ s1 and Ç S Ç/Æ 1.

Proof The statement follows by Observations 2, 4 and 6 as presented above. Ò
4.2 Theorem

Theorem 4.1. Let L0 be the Hardest Context-free Language as defined in Def. 2.3 and L
(λ ÍÌ L) a cfl generated by a cfg G ÆhÎ N Ñ T Ñ PÑ S Ï in 2-GNF so that L Æ L Î G Ï . By encoding G
in L0 the length of a pair of sentential forms Ç sk Ç and Ç sk Á 1 Ç k È 1, for generating each block
“xicyiczid”, 1 Ð i Ð n, is bounded by Ç sk Ç�ÐhÇ sk Á 1 Ç�Ð�Ç sk Ç�Ê 2, where S : Æ s1 and Ç S ÇgÆ 1.
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Proof The statement follows by the Cor.’s 4.1 and 4.2. Ó
5 Conclusion

We present a new proof of the existence of the Hardest Context-free Language L0 in Sec.
3. This given proof is inherent in that the length of a pair of sentential forms Ô sk Ô and Ô sk Õ 1 Ô
k Ö 1, for generating each block “xicyiczid”, 1 × i × n, is bounded by Ô sk Ô/×ØÔ sk Õ 1 Ôg×ØÔ sk ÔÚÙ 2,
where S : Û s1 and Ô S Ô/Û 1, see Theorem 4.1.

Observe that some other well-known results could be influenced. It is known that a cfg
in GNF guarantees that each nonterminal, which generates a terminal string, cannot gener-
ate a terminal word of the length less than once. This observation is inherent of any defini-
tion of a GNF comparing the traditional GNF transformation [Gre65] or the new method for
transforming a cfg in GNF [KB97, BK99] and implies that we can prune any node whose
sentential form has the length greater than the given input string w. This fact includes the
connection in between the recognition and the parsing of a word w generated over a given
cfg G [Woo87]. We will therefore study the impact of Theorem 4.1 on recognizing and
parsing of a word generated over a given cfg G.
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