
User’s Functions in Standard Prolog

Tibor Ásványi

Dept. of Comp. Sci., Eötvös Loránd Univ.
Budapest, Pázmány Péter sétány 1/c, H-1117

asvanyi@inf.elte.hu

Abstract. We integrate user-defined functions with semantic equations
into standard Prolog. In order to interface them with Prolog, we intro-
duce a single operator. If a predicate invocation is prefixed by this opera-
tor, its parameters are expressions evaluated by the standard arithmetic
of Prolog, and by our equations using innermost basic narrowing. The
extended language is called PLN 5. (PLN = ProLog with Narrowing).
PLN 5 conforms to the ISO standard of Prolog without compromise. It
is a simple but flexible, conservative functional extension of ISO Prolog.
It does not introduce runtime overhead, and it avoids error-prone con-
structs. It adds the expressiveness of functions to the notational power
of Prolog.
PLN 5 is implemented in a SICStus Prolog module, and it is fully in-
tegrated with this host language. The implementation depends on the
term- and goal-expansion capabilities of SICStus.

1 Introduction

Our aim is to extend the Prolog arithmetic to user-defined and non-arithmetic
evaluation. In the extended language called PLN 5, the user can define his own
functions. Then he can freely mix the calls to his functions with the calls to the
predefined functions (of Prolog and PLN) in his pln expressions.

Our functions are defined by equations, stating that syntactically different
(i.e., non-unifiable) terms are semantically equal [2, 5]. Although this is a usual
solution in functional-logic programming (FLP), we feel that adding equations
to standard Prolog may work against the structured programming style: New
functions may turn terms representing data structures to terms representing
functional expressions, and this may unexpectedly change the meaning of the
old code, especially, the run of the goals parameterized by those terms. After
all, our aim is only to evaluate expressions. Therefore serious restrictions are
imposed on the use of equations, according to the following constraints:

(C1) The extension introduced must not alter the underlying language [1, 6].
(C2) If a PLN program is given, then new pln functions must not unexpectedly

change the meaning of the old code.
(C3) The new constructs must not cause runtime overhead compared to standard

Prolog programs.

104 Tibor Ásványi

In order to satisfy (C1), we introduce pln goals. They are predicate invocations
(or expandable goals [6]) prefixed by a ? operator: op(900,fy,?). Their param-
eters are pln expressions. When a pln goal is performed, first the parameters of
the prefixed call are evaluated. Then the pln expressions are replaced by their
values, and the resulting Prolog goal (without its ? prefix) is performed. (For
example, the Prolog goal write(f(N)+1) prints the term f(N)+1, but the pln
goal ?write(f(N)+1) prints the value of f(N)+1.)
(C2) is intended to support structured programming. This point will explain
the need of introducing the pln goals used to force the evaluation of the pln
expressions (sect. 2.1), and the need of constructor definitions (sect. 3).
(C3) means that the most of our constructs are handled during compilation. A
pln goal can be considered a call to the meta-predicate ’?’/1, but our precom-
piler substitutes it with an appropriate goal sequence (sect. 4).

1.1 The History of PLN

Similar constraints were already adopted by the author in his first work [9], but
they were not made explicit there. From [10] these requirements became in the
focus. The first extension called fnProlog [9] used the old Lisp-like back-quoting
construct [7] to include explicit data structures in evaluable expressions. In [10]
the extension became constructor-based, and the new constructs were properly
integrated with the module system of SICStus. In [11] the notation and the
terminology was highly developed. In [12] we introduced exception handling.
Whilst in [9] the compilation issues were in the centre, later the concepts and
the semantics of the language became more and more independent from the
implementation.

However, in the previous versions [9–12] functional expression evaluation was
forced by the prefix operator op(650,fy,?) if the term of the form ?term was
(a subterm of) the actual parameter of a goal. This method was inherited from
Prolog++ [4]. It caused some consistency problem: The functional expressions
inside meta-goals1 were not always handled. (This was partly known and declared
referring to effectivity problems.) In addition, the resolution of the consistency
problems raised by the interactions of evaluation forcing expression prefixes and
meta-predicate2 calls made the extension rather complex: This feature, especially
the notions of meta- and template-arguments deserved the most criticism on the
language.

Provided that the complete actual parameters of the predicate invocations
can only be forced to be evaluated, these consistency problems disappear. How-
1 A meta-goal is a member of a goal sequence, but in the source code of the program it

is usually a variable [1, 6]. When it is called during the run of the program, it must
be instantiated to an appropriate goal (sequence). It is (pre)compiled and then the
resulting sequence of predicate invocations is evaluated.

2 A meta-predicate usually has some meta-goals in the bodies of its clauses, and
these meta-goals are among its formal parameters. When the meta-predicate is in-
voked, the appropriate actual parameters must be goals. For example, findall/3
and goal/1 are predefined meta-predicates of Prolog [1, 6].

User’s Functions in Standard Prolog 105

ever, the terms with functor ’?’/1 are still specially handled, and this conflicts
with the ISO standard. In addition, the evaluation of the meta-goals needs a
significant amount of additional run-time checks even if functional expressions
are not used in them.

In PLN 5 [13] all these problematic concepts are replaced by the author’s
simple notion of pln goals: Just two new built-in predicates, ’?’/1 (sect. 1) and
constructor/2 (sect. 3) are introduced (and three new operators). Therefore
this extension is allowed by the standard [1]. It is easy to avoid the use of
predicate ’?’/1 in the meta-goals, because the pln functions can be invoked
with the syntax of predicate calls (sect. 4). Then (compared to Prolog) there is
no run-time overhead on the evaluation of (meta-)goals.

The notion of pln goals is the author’s reply to the popular demand for
introducing user defined functions into standard Prolog “with extensions to the
functionality of is/2” [3].

Now we have a completely new notion of meta-expressions. It is more flexible
and allows more effective implementation than the old one.

The implementation techniques were improved in general. As a result, the
current implementation written in SICStus Prolog 3.10 is simpler and faster, it
generates better Prolog code and it works together smoothly with other exten-
sions of SICStus which use the term and goal expansion facilities [6].

1.2 The Organisation of This Paper

In the next section we introduce our pln functions and pln expressions. The
concept of narrowing comes from [2], but we introduce it as a generalization of
arithmetic evaluation based on [4], according to the demand stated in [3]. In the
third section we introduce constructors [2]. The need of constructor definitions
in a conservative functional Prolog extension is recognised and argued. In the
fourth section the most important features of the actual implementation are
dicussed. In the fifth section we discuss some built-in functions of PLN 5 [13].

Instead of a formal approach, the author prefers to give a taste of his Prolog
extension, and to explain, why, and how the more important new notions and
constructs were introduced.

2 Basic Ideas of Expression Evaluation

Following the idea of Phil Vasey [4], we generalize Prolog [6] arithmetic with
semantic equations (sect. 2.1), which are applied only if forced, and only in
left-to-right direction, using innermost basic narrowing3 [2].

3 Narrowing means the following: When an equation is applied, its head (sect. 2.1)
is unified with the subexpression to be evaluated. During the unification the vari-
ables of the expression to be evaluated may be instantiated. Then the search tree
of the corresponding goal sequence grows narrow. Basic narrowing means that the

106 Tibor Ásványi

2.1 PLN Functions and Expressions

Following [2, 4] a pln function is a sequence of pln clauses, and a pln clause is a
semantic equation, that is

– a pln rule of the form: head = expression :- condition.
– or a pln fact of the form: head = expression.

Syntactically head is a compound term, expression is a term representing a pln
expression, and condition is a goal. The corresponding function is identified by
the name and arity of the principal functor of head, and we will refer to it
in the form name//arity. For example, the pln function fib//1 (calculating
Fibonacci numbers) may be defined as follows:

fib(N) = fib(N-1)+fib(N-2) :- integer(N), N>1.
fib(1) = 1. fib(0) = 1.

According to our first constraint (C1) the goal X=fib(2) is only a syntactic
equation. According to (C2) it must try to unify the terms X and fib(2), whether
the pln function above is present in our program or not. Therefore, if we want
to interpret a term in a goal as a pln expression, we have to use a pln goal,
that is, a predicate invocation prefixed by a ? operator: op(900,fy,?) (see the
Introduction). Then the parameters of the call are pln expressions, and they are
evaluated.

For example, the goal ? X = fib(2) first evaluates fib(2) to its value,
i.e., 2, provided that fib//1 is defined as above. (X is evaluated to itself.) Then
the resulting goal, i.e., X=2 is called, unifying X and 2.

A pln expression can be an eval expression (sect. 2.2), a data term (sect. 2.3),
a constructor expression (sect. 3), or a call to a predefined pln function (sect. 5).

Syntactically, the pln expressions are always Prolog terms, because PLN is
built on the top of Prolog. If a pln expression is a compile-time compound4, it is
an eval expression by default, but it may be a constructor expression, or a call
to a predefined pln function, too. The constants and the compile-time variables
are data terms.

2.2 Eval Expressions

Eval expressions are compound pln expressions. They are function calls invoking
arithmetic or user-defined functions (according to our aim: see the Introduction).
They are parameterized by pln expressions.

basic restriction described in sect. 2.3 is applied. Innermost narrowing means that
an equation is applied to an expression when the proper subexpresssions of that
expression have been evaluated.

4 The compilation time of a meta-goal is the time when it is called, because it is often
transformed before its predicate invocations start to run.

User’s Functions in Standard Prolog 107

The subexpressions of an eval expression are evaluated in the ‘leftmost-
innermost order’ [2]. Therefore an eval expression is tried to be evaluated when
its subexpressions have been evaluated successfully.

For example, the eval expression fib(2) is evaluated (according to the defi-
nition of fib//1 in sect. 2.1) by the usual eager evaluation method as follows:

fib(2) -> fib(2-1)+fib(2-2) -> fib(1)+fib(2-2) ->
1+fib(2-2) -> 1+fib(0) -> 1+1 -> 2

2.3 Data Terms

A data term represents itself. No evaluation is done to data terms. Constants
(atoms and numbers), variables, and subterms introduced (after compilation4)
by variable instantiation are always data terms.

This later means that an evaluation step “is only performed at a (compound)
subterm which is not part of a substitution (introduced by previous unification
operations), but belongs to an original (i.e. compile-time4) program clause or
goal” [2]. Let this restriction be called basic restriction, because it is applied
in ‘basic narrowing’ [2]. (This decision follows the usual solution of functional
languages, and allows efficient implementation of expression evaluation, without
meta-goals depending on the variables of the pln expressions. This is necessary
to satisfy (C3).)

In Prolog++ [4], and in earlier versions of PLN [9–12] the atoms (name
constants) of the functional expressions were considered symbolic constants de-
noting other values by default. They were defined by simple equations like
limit=1000. Programming experience has shown that in most cases the atoms

in the pln expressions stand for themselves, and the old semantics is a source of
many programming mistakes. Therefore in PLN 5 the atoms are never evaluated,
and the head parts of the pln clauses must be compound terms (see sect. 2.1).
The symbolic constants of a PLN 5 program may be defined as pln facts of a
special, user-chosen function. The author’s proposal is v//1. For example:

v(limit)=1000.
v(depth)=20.

2.4 A Single Step of Evaluation

Let us suppose, that the principal functor of the current eval expression, that is,
of the subexpression to be evaluated is f/n (n > 0).

If f/n is allowed in an arithmetic expression according to the underlying
Prolog system [1, 6], the corresponding step of standard evaluation is performed
using the arithmetic of Prolog.
Otherwise a pln invocation is executed.

If there exists an appropriate pln function f//n, (visible in the source module
of the current subexpression), a step of narrowing [2] is performed. First a pln
clause whose head is unifiable with the current subexpression is selected. Let it

108 Tibor Ásványi

be “head = expression :- condition.” (condition may be true.) Let the
unifying substitution be θ. Next, (if conditionθ is successful with the substitution
ϕ), the current subexpression is replaced by expressionθϕ. The pln clauses are
tried sequentially, and choice points are generated, if there are more candidates.
If no pln clause can perform the actual step of evaluation, although the pln
function is appropriate in the sense described above, the evaluation step fails
and we backtrack to the last choice point, selecting the next alternative. When
the last alternative is selected, the choice point is deleted.

Generating choice points is inherited from Prolog. It is used even in the case
of fib//1: When in the actual implementation [13] (based on SICStus Prolog
3.10 [6]) fib(1) is to be evaluated, the first pln clause is tried first, but
its condition, (actually 1>1), fails. Then it backtracks, selects the second pln
clause, and succeeds in evaluating fib(1) to 1. No choice point remains,
because first argument indexing is also inherited from the underlying Prolog
implementation [6]. (Therefore the third clause was not considered at the choice
point. If fib(K) is to be evaluated, and K\=1, and K\=0, no choice point is
generated, because first argument indexing rules out the second and the third
pln clauses.)

When the narrowing step above has been performed, expressionθϕ is usually
evaluated further, because expression is a pln expression, which fact manifests
that functions are most often defined by another functions, and the base cases
can be conveniently handled using constructors and quoting (sect. 3, 5.1), if
necessary.

The last case of valid evaluation steps is, when a predicate is invoked like
a pln function. If the current subexpression with the principal functor f/n has
an appropriate predicate f/(n + 1), then this predicate is invoked in the evalua-
tion step: Let us suppose, that the current subexpression is f(t1, . . . , tn), where
t1, . . . , tn have been evaluated according to the eager evaluation used. Now the
predicate invocation f(t1, . . . , tn, NewV ar) is performed where NewV ar is a
fresh variable, and the result of the evaluation is NewV ar instantiated by this
goal. The step may generate a choice point, or it may even fail and backtrack,
as usual.

The last case of valid evaluation steps is allowed to support the use of
built-in predicates, and the use of predicates of existing modules in pln expres-
sions. The data flow of these predicate invocations cannot be more general than
(?, ?, . . . , ?,−). (This limitation is resolved with the block-expressions in [13].)

If f/n is a non-arithmetic functor (n > 0) of a compound [6], and there is
neither an appropriate function nor a predicate in the sense decribed above, then
the exception existence_error is raised.

3 Constructor Expressions

In functional languages many evaluable expressions contain explicit compound
data structures. However, a compile-time compound of a pln expression is an
eval expression (sect. 2.2) by default (sect. 2.1). In this section we describe

User’s Functions in Standard Prolog 109

how to change this default so that the functor of a compund can represent the
constructor of an explicit data structure in a pln expression, too.

It is clear that we should not perform evaluation on a pln expression at every
position where it is allowed by the basic restriction (sect. 2.3). For example, we
must support the pln function concatenating two lists:

conc([],List) = List.
conc([Head|Tail],List) = [Head|conc(Tail,List)].

There is no evaluation to be performed at the position of the functor ’.’/2.
Consider the pln function for inserting a new item into an unbalanced binary
search tree:

insert(tree(Root,Left,Right),X) =
insert(Rel,X,Root,Left,Right) :- compare(Rel,X,Root).

insert(void,X) = tree(X,void,void).

insert(<,X,Root,Left,Right) = tree(Root,insert(Left,X),
Right).

insert(=,X,Root,Left,Right) = tree(Root,Left,Right).
insert(>,X,Root,Left,Right) = tree(Root,Left,insert(Right,

X)).

It is clear that no evaluation should be allowed at the positions of the functor
tree/3. Therefore the functors ’.’/2 and tree/3 will be constructors.

A pln expression is a constructor expression iff it is a compile-time compound
and its functor is a constructor. A constructor expression is parameterized by
pln expressions. When it is called, first its parameters are evaluated. Next, they
are replaced by their values, and the resulting term is returned.

The only predefined constructor is ’.’/2 , but tree/3 can be defined
as constructor using a the built-in predicate constructor/2. This is a special
built-in, the user defines its clauses:

constructor(tree,3). % tree/3 is a constructor.
constructor(s,_). % Every s/N (N>0 integer) is

constructor.
constructor(_,0). % Unnecessary: constants are never

evaluated.

This means that the functor f/n of a compound is constructor, if the goal
constructor(f, n) is successful with it. Predicate constructor/2 can be de-
clared multifile and/or dynamic, too.

Constructor definitions are unusual in functional Prolog extensions, and one
may ask: “Why is it necessary to define constructors? You could also deduce that
each symbol which does not occur outermost in the head of a pln rule/fact is a
constructor. (As it is done in [5])” First, we could not. Our precompiler cannot
recognize all the pln functions defined in other files and compiled separately.
Second, new pln functions would change the meaning of the old pln expressions,
(see (C2)), if we adopted this approach.

110 Tibor Ásványi

4 Implementation and Notation

Up till now we have explained semantics. In the actual implementation a pln
function is flattened to a Prolog predicate and a pln expression is flattened
to a goal sequence according to [2, 5, 9, 13]. For example, fib//1 (sect. 2.1) is
flattened to the following predicate:

fib(N,F) :- integer(N), N>1,
N1 is N-1, fib(N1,F1),
N2 is N-2, fib(N2,F2), F is F1+F2.

fib(1,1). fib(0,1).

We used the hook predicate user:term_expansion/2 [6]. Similarly the pln goal
?X=fib(2) is flattened to the goal (fib(2,Temp), X=Temp) using the

hook predicate user:goal_expansion/3 [6]. Consider the predicate

p(A) :- ?fib(2*A+1)>2*fib(A)+1.

It is flattened into

p(A) :- B is 2*A+1, fib(B, C),
fib(A, D),
C>2*D+1.

These hooks are defined in module pln [13], according to (C3).
On the one hand, fib//1 in sect. 2.1 is much more elegant, and easier to

understand than the corresponding predicate above, because “functional nota-
tion is more readable for pure functional definitions”.5 On the other hand, this
implementation technique implies that pln functions and pln expressions are just
notational variants of Prolog predicates and goals. “We believe nonetheless that
syntax is important; the power of a good notation is well known from mathemat-
ics.”6 After all, this notation often helps the programmer to show the essence of
his algorithm.

A flattened call like f(t1, . . . , tn, NewV ar) to the pln function f//n is valid,
even if written by the user. (It comes from the implementation.) However,
NewV ar should be a free variable, because a pln function is normally defined
with the supposition that its run will not be influenced by some initial value of
its returning expression.

Code optimizations, and especially tail-recursion optimization is not per-
formed by our pre-complier. However, if the pln function itself is tail-recursive
according to the ‘leftmost-innermost’ evaluation order, it is flattened into a tail-
recursive predicate, too. The reason is that the subgoals of the flattened form
of a pln expression come according to the order of evaluation. For example,
f//1 is equivalent to fib//1 defined in sect. 2.1, and it invokes the tail-

recursive f//3 :
5 See [8] (Sterling, Shapiro: The Art of Prolog, section 3.1 on page 54).
6 See [8] (Sterling, Shapiro: The Art of Prolog, section 8.1 on page 150).

User’s Functions in Standard Prolog 111

f(N) = f(N,1,1) :- integer(N), N>0.
f(0) = 1.

f(K,FN1_K,FN_K) = f(K-1,FN1_K+FN_K,FN1_K) :- K>1.
f(1,FN,_) = FN.

(Notice that ?FN1_K=fib(N+1-K) and ?FN_K=fib(N-K) in f//3 through-
out the recursion.)

The flattened form of f//1 and f//3 is the following: (As it can be seen,
predicate f/4 is tail-recursive):

f(N,F) :- integer(N), N>0, f(N,1,1,F) .
f(0,1).

f(K,FN1_K,FN_K,FN) :- K>1,
K_1 is K-1, FN2_K is FN1_K+FN_K,
f(K_1,FN2_K,FN1_K,FN).

f(1,FN,_,FN).

The flattening of constructor expressions is very simple: Their functors are not
flattened at all, just their arguments. For example, this is the flattened form of
conc//2 (sect. 3):

conc([],List,List).
conc([Head|Tail],List,[Head|TailList]) :-

conc(Tail,List,TailList).

In the flattening process [2, 5, 9, 13], a pln expression is flattened to a goal se-
quence, and each goal corresponds to a step of evaluation. This method nat-
urally corresponds to our innermost basic narrowing strategy, which is simple
and fixed, like the default evaluation order of Prolog goals. According to our
current knowledge, lazy evaluation strategy results in much more complex code
with considerable run-time overhead, contrasting with (C3), (see [5] for details).
It is so, because we are at the level of a simple precompiler, and cannot make
sophisticated analysis of the code. This is partly due to the separately compiled
parts of the program, and partly due to the scope of the current work. (That is,
we flatten every single pln fact/rule independently from each other.)

5 Built-in Functions of PLN

The built-in functions introduce special evaluation techniques. Together with
these functions invented by the author, PLN becomes more than an elegant
notation. Only four predefined functions of PLN 5 are presented here. See [13]
for more details.

112 Tibor Ásványi

5.1 Constructor and quote prefixes

There are some functors that should not be defined as constructors (sect. 3),
for example ’+’/2. If one of these is sometimes used as a constructor, it can
be expressed by using the ^ constructor prefix (op(650,fy,[^,^^])). The
pln expression ^exp is evaluated as the constructor expression exp. For example,
consider the following symbolic derivation rule:

derive(A+B) = ^derive(A)+derive(B).

A compound pln expression becomes a data term, if the ^^ prefix is used. This
is called quoting [4, 7, 9]. The pln expression ^^exp results simply exp.

5.2 Meta-Expressions

Meta-programming is possible through meta-expressions calculating other evalu-
able expressions: apply(f, x1, . . . , xn) is the general form of a meta-expression.

First it evaluates the pln expressions f and x1, . . . , xn. Let their values be g
and y1, . . . , yn. Now g must be an atom or a compound:

1. If g is an atom, then the function call g(y1, . . . , yn) is evaluated, depending
on g/n : If it is
– a constructor, then the result is the term g(y1, . . . , yn) itself.
– an arithmetic functor, then the result is the arithmetic value of

g(y1, . . . , yn) calculated by the Prolog arithmetic.
– neither of them, then the value of g(y1, . . . , yn) is calculated by the ap-

propriate pln invocation according to sect. 2.4, where g//n may be a
user-defined function or g/(n + 1) may be any predicate.

2. If g is a compound term, that is, g = h(z1, . . . , zm), then we perform the
function call h(z1, . . . , zm, y1, . . . , yn) according to the first case.

3. Otherwise the exception funcname_error(apply(f, x1, . . . , xn))
is raised [1, 6, 13].

For example:

map_list([X|Xs],Transform) = % Apply transformation
[apply(Transform,X) % ‘Transform’ to all the
| map_list(Xs,Transform) % items of a proper list.
].

map_list([],_Transform) = [].

% Multiply vector V by scalar (number) S.
% V is represented by a proper list of numbers.
mult_by(V,S) = map_list(V,^(*(S))).

% The following operation is a common abstraction of vector
% operations like scalar product and sum of vectors:

User’s Functions in Standard Prolog 113

op2v([X|Xs],[Y|Ys],Make,Combine,Null) =
apply(Combine,

apply(Make,X,Y),
op2v(Xs,Ys,Make,Combine,Null)

).
op2v([],[],_Make,_Combine,Null) = Null.

% Scalar product of vectors:
mult(V1,V2) = op2v(V1,V2,*,+,0).

% Sum of two vectors:
add(V1,V2) = op2v(V1,V2,+,.,[]).

5.3 Conditional Expressions

In order to give a better support to writing deterministic programs, we support
special pln expressions: conditional expressions of the form

{ Condition -> ThenExpression ; ElseExpression }
{ Condition -> ThenExpression }

Condition is a Prolog goal sequence, ThenExpression and ElseExpression
are pln expressions. (The cuts are local to Condition.) If Condition is success-
ful, ThenExpression, otherwise ElseExpression calculates the result of the
conditional expression. Only one solution of Condition is considered. This is
analogous to conditional goals. ElseExpression can be a conditional expression
without parenthesizing it. ElseExpression may also be omitted. If this is the
case, and Condition fails, the whole expression fails. For example, fibonacci//1
and fibon//1 are nearly equivalent. But fibonacci(N) raises the appropriate
exception if N is not a natural number [13], while fibon(N) simply fails.

fibonacci(N) =
{ \+ integer(N) -> throw(type_error)
; N >= 0 -> fib(N)
; throw(constraint_error)
}.

fib(N) = { N>1 -> fib(N-1)+fib(N-2) ; 1 }.

fibon(N) = { integer(N), N >= 0 -> fib(N) }.

6 Conclusions

PLN 5 [13] is a functional extension of ISO Prolog. Its actual implementation is
an extension of SICStus Prolog 3.10.

According to the trend of the standardization of Prolog [3], the aim of this
project is to generalize Prolog arithmetic to user-defined functions and non-
arithmetic expressions. Our constraints are: do not modify the underlying lan-
guage, support structured programming, and do not lose efficiency.

114 Tibor Ásványi

The project meets its aim and constraints. PLN 5 increases the self-
documenting feature of Prolog, because it brings it closer to the traditional
notation used by mathematicians.

PLN 5 is designed carefully: Its interconnections with all the other concepts
of the underlying language have been examined. The implementation represents
a nontrivial engineering task, but its details exceed the scope of this paper.

The current implementation of PLN 5 represents a pragmatic approach, be-
cause it is built on the top of a sophisticated and widely used Prolog system,
which conforms to the ISO standard [1]. This standard is not yet complete. For
example, modules are not yet standardized. Therefore the actual implementa-
tion of PLN 5 is integrated with the module system of SICStus. See [13] for the
details. Considering the great influence of SICStus on the standardization pro-
cess, it is believed that the standardization of the remaining features will result
in similar solutions to those of SICStus. Summarizing this, we may well say that
this project is a step towards the standardization of user-defined functions in
Prolog.

References

1. Deransart P., Ed-Dbali A.A., Cervoni L., Prolog: The Standard (Reference Man-
ual), Springer-Verlag, 1996.

2. Hanus M., The Integration of Functions into Logic Programming, Journal of Logic
Programming, 19&20:583-628, Elsevier Science Publishing Co., Inc., New York
1994.

3. Hodgson J., WG17 Open Meeting at PACLP 99, in: The ALP Newsleter Volume
12/2, May 1999.

4. Moss C., Prolog++, The Power of Object-Oriented and Logic Programming,
Addison-Wesley Publishing Company, Wokingham, England, 1994.

5. Naish L., Adding Equations to NU-Prolog, Proc. of the 3rd Int. Symposium on
Programming Language Implementation and Logic Programming, Springer LNCS
528, pp. 15-26, 1991.

6. SICStus Prolog 3.10 User’s Manual, Swedish Institute of Computer Science, PO
Box 1263, S-164 28 Kista, Sweden, 2003.
(http://www.sics.se/isl/sicstuswww/site/documentation.html)

7. Steele G. L., Common Lisp: The Language, 2nd Edition Digital Press, 1990.
8. Sterling L., Shapiro E., The Art of Prolog (Second Edition), The MIT Press, Lon-

don, England, 1994.
9. Ásványi T., Functions in Full Prolog, Annales Univ. Sci. Bud. Sec. Comp., 1998.

10. Ásványi T., Functional Logic Programming with Expression Reduction, in: Pure
Mathematics and Applications (PU.M.A.), Budapest University of Economic Sci-
ences, Vol. 9 (1998), No. 1–2, pp. 1–16., Budapest, 1998.

11. Ásványi T., A Generalization of Arithmetic Expressions in SICStus Prolog, in:
7th International Workshop on Functional and Logic Programming, Proceedings,
University of Münster, Germany, June 1998.

12. Ásványi T., Adding Functions to SICStus Prolog, in: Logic Programming: The
1999 International Conference, The MIT Press, London, England, 1999.

13. Ásványi T., PLN 5: User’s Manual and Implementation
http://www.inf.elte.hu/~asvanyi/pl/pln/

Eötvös Loránd University, Budapest, 2003.

