
Proving Invariants of Functional Programs?

Zoltán Horváth, Tamás Kozsik, Máté Tejfel

Eötvös Loránd University
Department of General Computer Science

{hz,kto,matej}@inf.elte.hu

Abstract. In a pure functional language like Clean the values of the
functional variables are constants; variables of functional programs do
not change in time. Hence it seems that temporality has no meaning
in functional programs. However, in certain cases (e.g. in interactive or
distributed programs, or in ones that use IO) we would like to consider a
series of values computed from each other as different states of the same
“abstract object”. For this abstract object we can already prove temporal
properties. In this paper we present the concept of object abstraction
and show how to interpret and prove temporal properties of functional
programs.

1 Introduction

When proving correctness of (sequential or parallel) imperative programs, one
can make use of several temporal logical operators. Some well-known such op-
erators are e.g. “nexttime”, “sometimes”, “always” and “invariant”. All these
operators can be expressed based on the “weakest precondition” operator [6,
7]. However, temporal logical operators are less frequently used when reasoning
about functional programs (among the few exceptions are e.g. [5, 8–10]). This pa-
per aims to answer the question how to interpret and prove temporal properties
of functional programs.

The temporal logical operators describe how the values of the program vari-
ables (the so-called program state) vary in time. For example, the weakest pre-
condition of a program statement with respect to a postcondition holds for a
state “a” if and only if the statement starting from “a” always terminates in a
state for which the postcondition holds. The weakest precondition of a statement
is possible to compute in an automated way: one has to rewrite the postcondi-
tion according to the substitution rules defined by the statement. We will show
some examples of how this is done in section 3.1.

A property P is an invariant with respect to a program if P holds initially
and all the atomic statements of the program preserve P . Note that the second
part of this requirement can be expressed with the weakest precondition oper-
ator: for all atomic statements, the weakest precondition of the statement with
respect to P must follow from P . This ensures that if we execute an atomic

? Supported by OTKA T037742

116 Zoltán Horváth, Tamás Kozsik, Máté Tejfel

statement in a state where P holds (and hence the weakest precondition of the
statement with respect to P also holds), the statement will again terminate in
a state for which P holds. We will formalize this in the following way. (The
weakest precondition operator is denoted by wp, while a program and its atomic
statements are denoted by S and s, respectively.)

∀s ∈ S : P ⇒ wp(s, P)

Invariants can manifest in many ways: we can talk about loop invariants (where
the atomic statement is a loop body), type invariants (where the atomic state-
ments are the primitive operations of a type), and invariants are an important
concept in many parallel programming methodologies as well (see e.g. [4]). We
believe that invariants are popular because they provide a very natural concept
and a very useful abstraction for specifying and proving properties of programs.
This paper focuses on invariant properties, hence we omit the description of the
other afore-mentioned temporal logical operators.

When proving correctness of functional programs, the practicability of tem-
poral operators is not obvious. In a pure functional programming language a
variable is a value, like in mathematics, and not an “object” that can change its
value in time, viz. during program execution. Due to referential transparency,
reasoning about functional programs can be accomplished with a fairly simple
mathematical machinery, using, for example, classical logic and induction (see
e.g. [11]). This fact is one of the basic advantages of functional programs over
imperative ones.

In our opinion, however, in certain cases it is natural to express our knowl-
edge about the behaviour of a functional program (or, we had better say, our
knowledge about the values the program computes) in terms of temporal logical
operators. Moreover, in the case of parallel or distributed functional programs,
temporal properties are exactly as useful as they are in the case of imperative
programs. For example, those invariants which are preserved by all components
of a distributed or parallel program, are also preserved by the compound pro-
gram.

According to our approach, certain values computed during the evaluation of
a functional program can be regarded as successive values of the same “abstract
object”. This corresponds directly to the view which certain object-oriented
functional languages hold.

We have chosen Clean [13], a lazy, pure functional language for our research.
An important factor in our choice was that a theorem prover, Sparkle [11] is
already built in the integrated development environment of Clean. Sparkle sup-
ports reasoning about Clean programs almost directly. We would like to extend
the first-order logic used by Sparkle with temporal operators, thus making semi-
automated reasoning about parallel, interactive or distributed Clean programs
easier.

The “uniqueness type system” of Clean [2] makes destructive updates possi-
ble without violating referential transparency. The uniqueness type system guar-
antees that certain values are only used once in the program (they are unique),

Proving Invariants of Functional Programs 117

hence they can be destructively updated when computing other values. This
technique is used to define I/O in Clean, furthermore it greatly increases the
efficiency of Clean programs. It is interesting to see that in many cases, an
abstract object of our approach corresponds to a set of unique values: values
that were computed from each other by destructive updates. Hence the abstract
view of objects often—but not always—coincides with the memory layout of the
implementation.

The rest of the paper is organized in the following way. In Section 2 we
introduce our approach through a simplistic example. Then in Section 3 we
present a formal method for the calculation of weakest preconditions and for the
proof of invariant properties. Next, in Section 4, we give a more realistic example
of object abstraction, and show a simple invariant property of an abstract object.
Section 5 presents the proof of a more interesting invariant property. Finally, in
section 6, we draw the conclusions and define future work.

2 Object abstraction

In Clean the uniqueness type system makes destructive updates possible without
violating referential transparency. Not only the efficiency of Clean programs can
be increased by destructive updates, but also the I/O system of Clean is defined
in terms of a “unique environment”. (The other well-known technique to define
pure functional I/O is the monadic approach, applied in the language Haskell
[12].) The Object I/O library [1] is a standard API for Clean. Programs written
with the Object I/O library are reactive. They create a unique state space (re-
ferred to as “process state” and “local state” in Object I/O terminology), and
define initialization and state transition functions. The library supports inter-
active processes, which can be created and closed dynamically. Each interactive
process may consist of an arbitrary number of interactive objects. To characterize
the behavior of I/O processes we can use a temporal logic-based notation [4, 7].
We have researched this issue in [8, 9].

This paper investigates a more general approach to formulating and proving
temporal properties of functional programs. In this approach we can also reason
about Clean programs that do not use unique values or interactive Object I/O
processes. Not only the call-back functions of Object I/O will be state transition
functions: the programmer can demarcate state transitions explicitly in a more
flexible way. Different values computed by a functional program and stored in
variables (in the functional sense of variables) can be regarded as different states
of the same object. State transitions will thus be the pieces of functional code
that compute such a value from another one.

Our first example, though it might seem oversimplified, illustrates well our
concept of object abstraction. Suppose we want to sort (in ascending order) a list
containing five numbers. We will make use of the function bubble. This function
searches for two elements in a list that are in wrong order. If it can find such
two elements, it swaps them and returns the resulting list, otherwise it returns

118 Zoltán Horváth, Tamás Kozsik, Máté Tejfel

the original list. Obviously, it is sufficient to invoke bubble 25 times to sort five
numbers.

sort_5 list = bubble (bubble (... (bubble list)...))

We can write the same program in Clean using so-called let-before expres-
sions. Both of the following function definitions are legal in Clean and have
the same meaning. The one on the right uses the same name, list, to all 24
variables. In this case the usual static nested scoping rules apply. (The line
“# list = bubble list” introduces a nested scope with a fresh list variable,
thus hiding the variable with the same name appearing on the right-hand side.)

sort_5 list sort_5 list
ls1 = bubble list # list = bubble list
ls2 = bubble ls1 # list = bubble list
ls3 = bubble ls2 # list = bubble list
... ...
ls23 = bubble ls22 # list = bubble list
= bubble ls23 = bubble list

An important property of the bubble function is that the list it returns
is a permutation of the list it receives. If we regard the list values computed
in sort_5 as the successive states of the same abstract object, and consider
bubble an atomic operation, we can formulate an invariant, a temporal property
of sort_5. If we denote our abstract list object with list , then the invariant
can be written as:

list ∈ perm(list).

Here list denotes the argument of sort_5.
Consider now the second definition of sort_5, the one that contains the

variables ls1, ls2, ls3, etc. Our approach should allow us to declare that the
abstract object list is made up of the values list, ls1, ls2, ..., ls23 and
bubble ls23. Furthermore, it should allow us to declare that bubble is consid-
ered atomic and that each invocation of bubble in sort_5 is a state transition.

2.1 The object abstraction operator

We introduce an operator which maps functional values to our semantic domain,
the state space. This “object abstraction” operator will be used to refer to the
abstract object to which a value belongs. In our sorting example list will refer
to the same abstract object as e.g. ls1 . This can be expressed by the equation

list = ls1 .

(Hence the object abstraction operator will define an equivalence relation over
the values appearing in a functional program.) Moreover, the successive values

Proving Invariants of Functional Programs 119

of the same abstract object will define an abstract time structure denoted by
the partial ordering <t.

list <t ls1 <t ls2 <t . . . <t ls23 <t (bubble ls23)

If more than one object is present in a certain piece of code, then the states
are compositions of the individual states of the objects. In such cases two or
more objects can be involved in an atomic state transition over this compound
state space.

Since evaluation is lazy in Clean, the partial ordering <t determines a branch-
ing time structure over the state space. Fortunately, we do not have to refer
explicitly to the <t relation, because we use temporal logical operators instead.

2.2 Identification of state transitions

It would be useful to assign symbolic names to pieces of code which correspond
to atomic state transitions. We introduce an infix binary operator for labeling,
which does not have any influence on computation: the operator “.:” simply
drops its first argument, the label. For example, we can label a state transition
"b" in the following way:

list = "b" .: (bubble list)

This let before definition determines the value of list on the left-hand side
depending on the value of list on the right-hand side. The two list-s are
different from each other, the list on the left-hand side hides (within its scope)
the list on the right hand side. We may consider the two list-s (two different
functional entities) belonging to the same abstract object list . According to
this object abstraction the list on the left-hand side represents a descendant
of the value of list on the right-hand side. The let-before definition labeled by
"b" represents an atomic state transition.

3 Formal calculations

In this section we explain how to calculate the weakest precondition of an atomic
action with respect to a postcondition, and how to prove invariant properties of
programs. Consider the following piece of code, which increases a value by one
modulo 5.

v = "f" .: (if (v<5) (inc v) 0)

Let our state space consist of a single component, the state represented by object
v . Both values denoted by v are associated with this object. Moreover, we

assume that the state transition labeled with "f" is atomic.

120 Zoltán Horváth, Tamás Kozsik, Máté Tejfel

3.1 Formal calculation of weakest precondition

Let us consider the following postcondition R:

R(v) = (0 ≤ v < 5).

We are interested in characterizing all states from where the atomic state
transition "f" terminates in a state for which R holds, i.e. we would like to
determine the weakest precondition of "f" with respect to R.

If v ≥ 5, then the new v value will be equal to 0, hence the new value
of the abstract object v will be 0. If v < 5, then the new v is calculated
by incrementing the old v, hence the state of v is changed to v + 1. The
postcondition holds for the new value, if the weakest precondition calculated
below holds for the original state. This example illustrates the general method
that we can use to calculate the weakest precondition: in the postcondition we
should substitute the old value of the object with its new value.

wp(f,R) =
(v < 5 → 0 ≤ inc(v) < 5) ∧ (v ≥ 5 → 0 ≤ 0 < 5)

The new value used in the substitution is the right-hand side of the definition
of the function which function is applied on the old value of the abstract object.
This way the calculation of the weakest precondition is a simple rewriting step,
which fits very well into the world of functional computations.

3.2 Proving invariants

Proving that a property P is an invariant requires two things. First, one has
to check whether the initial values of the objects satisfy P . Next, one has to
calculate the weakest precondition for all atomic state transitions: for each such
atomic state transition one has to compute the substitution of P using the
corresponding state transition function. Then one should prove that all these
wp-s hold, if P holds.

Now we show how to prove that the atomic step "f" preserves the truth of
R, i.e. R ⇒ wp(f,R). We have to prove by hand or by a proof assistant (e.g.
Sparkle) the following theorem:

0 ≤ v < 5 ⇒
(v < 5 → 0 ≤ inc(v) < 5) ∧ (v ≥ 5 → 0 ≤ 0 < 5).

To complete the proof we have to apply the definition of inc—which is a rewriting
step again—and then use the well-known deduction rules of classical logic.

4 A more realistic example

Consider now a more complex example. The analyzed Clean function will be a
binary search. It takes an array of elements of type “a” (where “a” is a type

Proving Invariants of Functional Programs 121

variable expressing polymorphism) and a value of type “a”. It returns either
Nothing, if the given value could not be found in the array, or (Just h), if the
given value was found at position h in the array. The array is unique (denoted by
the * symbol in the type specification of the function), that’s why bin_search
also returns a new unique reference to it. The implementation of unique arrays is
very similar to objects in imperative languages, in the sense that the new array
is stored in the same memory location where the old array was stored. This is
possible because uniqueness guarantees that there are no more references to the
old array.

bin_search :: *{a} a -> (Maybe Int, *{a}) | Ord, Eq a
bin_search arr e

(s, arr) = usize arr
= find_it arr 0 (s-1)
where find_it arr u v

| u > v
= (Nothing, arr)

| otherwise
h = (u+v)/2
(arr_h, arr) = uselect arr h
| arr_h == e

= (Just h, arr)
| otherwise

(u,v) = if (arr_h<e) (h+1,v) (u,h-1)
= find_it arr u v

Functions usize and uselect are from the standard library. They can be used
to retrieve the size and an element of a unique array, respectively.

Now let us apply bin_search on an array arr and an element e.

(h,arr1) = bin_search arr e

Note that the binary search algorithm requires as precondition that its first
argument is a sorted array. We will denote it with the following formula:

sorted(arr)

We introduce the abstract object arr from values arr and arr1, where arr
<t arr1. First we would like to prove a trivial invariant property of this object,
namely that bin_search does not change the unique array.

P (arr) = (arr = arr), P ∈ inv

We will not consider bin_search an atomic state transition, hence we will dive
into its definition. We identify one more state of the arr object, namely when
arr has the value arr returned by usize. Now the second state transition of
arr changes this second occurrence of arr to arr1 by applying find_it. The

two state transitions are the following:

122 Zoltán Horváth, Tamás Kozsik, Máté Tejfel

(s,arr) = usize arr
(h,arr1) = find_it arr 0 (s-1)

In order to prove that P is an invariant of bin_search, we will prove that it is also
an invariant of find_it. Again, we will not consider the second state transition
atomic, hence we will dive into the definition of find_it. Since find_it is
defined as an alternative construct with two branches, we will replace our second
state transition with two other state transitions: one corresponding to the u > v
case, the other one corresponding to the otherwise (that is the ¬(u > v))
case. This latter can be further refined, until we obtain the following six state
transitions of arr , which we will not intend to further refine. (Irrelevant results
of state transitions are replaced with the joker character underscore.)

s1: (_,arr) = usize arr
s2: if u > v, then (_,arr1) = (Nothing, arr)
s3: if ¬(u > v), then (_,arr1) = uselect arr h
s4: if ¬(u > v) ∧ arr h = e, then (_,arr1) = (Just h, arr)
s5: if ¬(u > v) ∧ ¬(arr h = e), then (_,arr1) = find_it arr u v

(Notice that the variables u and v in the predicate and in the formal argu-
ments of find_it represent two different values with the same name.)

Note that the last state transition is the recursive application of find_it and
therefore can be cut. We will consider the remaining 4 state transitions atomic.
To prove that (arr = arr) is an invariant of bin_search and find_it with
respect to the atomicity level described above, we show that all these atomic
state transitions preserve this property and that this property holds for the
initial value of arr . The first part is fairly simple: s2 and s4 apply the identity
function on the array, while s1 and s3 apply usize and uselect, which again do
not change the value of the abstract object. (For this latter we must formulate
axioms about these two standard library functions.) Finally, we should prove that
the initial value of arr , namely arr satisfies (arr = arr), which is obvious,
since this requires that arr should be equal to itself.

5 A more interesting invariant property of binary search

If we want to prove the partial correctness of bin_search—namely that e does
not appear in arr, if “bin_search e arr” returns Nothing, and that e can be
found in arr at position h, if “bin_search e arr” returns “Just h”—we can
make use of some further invariants of our program. We can identify new abstract
objects and express our assumptions about them in terms of invariants. New
abstract objects and new invariants describing their behaviour are introduced
usually when we dive into a function invocation. In our example this happens at
the point where find_it is applied in bin_search.

Hence we extend the state space with u and v : these objects specify the
interval where find_it looks for the value e in arr . We are about to formulate
invariants expressing that e cannot be found in arr at a position outside the
interval [u .. v].

Proving Invariants of Functional Programs 123

First of all let us describe more precisely the object abstraction for u and
v . Their initial values are 0 and s−1, respectively, according to the application

of find_it within bin_search. (Note that the value s comes from usize arr ,
thus it is the length of the array.) Furthermore, all occurrences of the second
argument of find_it correspond to the u object, and all occurrences of the
third argument of find_it correspond to the v object.

The extension of the state space—and the introduction of new abstract
objects—is often followed by the refinement of the time structure <t. For ex-
ample, in bin_search we can cut the state transition s5 (previously considered
atomic) into two steps. The two new state transitions replacing s5 will be con-
sidered atomic steps from now on. They are the following:

s5a: if ¬(u > v) ∧ ¬(arr h = e), then
(u,v) = if (arr_h<e) (h+1,v) (u,h-1)

s5b: if ¬(u > v) ∧ ¬(arr h = e), then (_,arr1) = find_it arr u v

Our refined invariant, P ′ will be the conjunction of four parts. The first
part is the original P , which states that the initial value of the array object is
preserved. The second part specifies that the array remains sorted. The third
part states that the interval identified by u and v is either empty or part of
the domain of the array. Finally, the fourth part claims that the element we are
looking for is not outside the [u , v] interval. The free variables x, y and i in
the following formulas are implicitly universally quantified.

P ′(arr , u , v) =
P (arr) ∧ P0(arr) ∧ P1(arr , u , v) ∧ P2(arr , u , v)

where

P0(arr) = sorted(arr)

P1(arr , u , v) =((
(x, y) = usize arr

)
∧

(
u ≤ v

))
→ 0 ≤ u ∧ v < x

P2(arr , u , v) =((
(x, y) = uselect arr i

)
∧

(
i < u ∨ i > v

))
→ ¬(x = e)

To prove that P ′ is an invariant of find_it we have to check whether the initial
values of the objects satisfy P ′, and we have to show that P ′ guarantees the
weakest precondition of P ′ for all the atomic actions s2, s3, s4, s5a and s5b

of find_it. Note that s1 need not be considered, since this state transition
is outside of find_it, and hence the scope of P ′. However, we still have to
prove for this state transition (and also for the others, s2, s3, s4, s5a and s5b)

124 Zoltán Horváth, Tamás Kozsik, Máté Tejfel

the relevant, weaker invariant P ∧ P0, because this invariant will be used as
a precondition during the proof of “(P ′ ∈ invfind it)”. We omit the proof for
“(P ∧P0 ∈ invbin search)” here, since it is fairly simple; we will focus on find_it
and P ′.

The precondition Q for find_it is the following: P∧P0∧ u = 0∧ v = s−1.
This should guarantee P ′, that is Q ⇒ P ∧P0 ∧P1 ∧P2. The interesting part is
that Q ⇒ P1 and Q ⇒ P2. If we rewrite P1 and P2 according to the equalities
found in Q, we obtain the following formulas:

P1(arr, 0, s− 1) =((
(x, y) = usize arr

)
∧

(
0 ≤ s− 1

))
→ 0 ≤ 0 ∧ s− 1 < x

P2(arr, 0, s− 1) =((
(x, y) = uselect arr i

)
∧

(
i < 0 ∨ i > s− 1

))
→ ¬(x = e)

The first formula is valid, because the value of x appearing in the formula must
be equal to s, the size of arr obtained in s1. (Here we have to use the definition
of the functional variable s, namely (s,_) = usize arr.) The second formula is
also valid, since the left-hand side of the implication cannot hold. (The standard
library function uselect is undefined when applied to an array arr and an index
i outside of the domain of arr. This can be expressed by the following axiom:
(p, q) = usize r → (x, y) = uselect q i → 0 ≤ i < p.)

Now let us prove that P ′ ⇒ wp(f, P ′) for all state transitions “f” from s2,
s3, s4, s5a and s5b. If we have already proved P ∧ P0 ⇒ wp(f, P ∧ P0), as
mentioned earlier, then we only need to show that P ′ ⇒ wp(f, P1 ∧ P2). (This
is a nice property of refined invariants.) The proofs for s2, s3 and s4 are trivial,
hence we omit these cases. Moreover, s5b is a recursive application of find_it,
therefore this case can be cut. Hence we focus on the single interesting part:
P ′ ⇒ wp(s5a, P1 ∧ P2). According to the well-known conjunctivity property of
wp, we can perform the proof separately for the weakest precondition of P1 and
for that of P2. Furthermore, since s5a contains an if construct, the proofs for
the two branches of the if can be separately given. Hence we obtain four goals
to prove. Here we give the ones for P1; the other two are similar, just replace P1

with P2. By calculation of the weakest precondition we get:

P ′(arr , u , v) ∧ ¬(u > v) ∧ ¬(arr h = e) ∧ (arr h < e) ⇒
P1(arr , h + 1, v)

P ′(arr , u , v) ∧ ¬(u > v) ∧ ¬(arr h = e) ∧ ¬(arr h < e) ⇒
P1(arr , u , h− 1).

As an illustration, we present the proof for the first goal for P1. First let us
expand the formula P1(arr , h + 1, v), which we have obtained after the sub-

Proving Invariants of Functional Programs 125

stitution of u by h + 1:

P1(arr , h + 1, v) =((
(x, y) = usize arr

)
∧

(
h + 1 ≤ v

))
→ 0 ≤ h + 1 ∧ v < x.

Notice that the only non-trivial part of the proof is to show that under the
appropriate hypotheses 0 ≤ h + 1. Remember that the functional variable h
denotes (u + v)/2, where the symbol / is the division operator on integer
numbers (e.g. 3/2 = b 3

2c = 1 and (−3)/2 = d−3
2 e = −1). Hence the proof can

be easily accomplished by applying the following three lemmas on u and v :⌈
x + y

2

⌉
+1 ≤ y ⇒

⌊
x + y

2

⌋
+1 ≤ y ⇒ x ≤

⌊
x + y

2

⌋
+1 ⇒ x ≤

⌈
x + y

2

⌉
+1

The proof of the second goal for P1 is symmetrical to this proof. Finally,
the proofs of the two goals for P2 make use of the hypothesis P0(arr), which
formulates that arr is sorted. These proofs are left to the reader as an exercise.

6 Conclusions and future work

In this paper we have presented a method that allows the definition and proof of
temporal properties (namely invariants) in pure functional languages. We have
introduced the concept of object abstraction by contracting functional (that is
mathematical) variables, which represent static values, into objects with dynamic
(temporal) behaviour. According to this concept we could define an abstract time
structure in programs, representing the computational dependencies of values
(object states) on other values (other object states). We have also introduced the
notion of state transitions. We have illustrated how invariants over a set of atomic
state transitions can be computed and how this process can be automatized.

Our approach defines an alternative semantics of Clean programs. According
to this alternative semantics, some evaluation steps correspond to state transi-
tions over an abstract state space. The abstract state space is created by the
object abstraction, where series of pure functional values are associated to an
abstract objects. The evaluation order is non-deterministic in case of lazy eval-
uation, so the transition steps determine a branching time structure over the
elements of the state space.

The mapping of values to objects and the labeling of state transitions can be
performed by using annotations and/or supported by an appropriate user inter-
face integrated into the proof assistant. Furthermore, objects and state transi-
tions can be extracted from a functional program written in an appropriate style
in an automated way.

Our model is straightforward to extend to a full temporal logic. We can
prove all temporal properties which are based on the ”nexttime” operation,
i.e. on the calculation of the weakest precondition [4, 7]. We intend to prove
general safety properties (unless), and progress properties (leads-to, ensures)

126 Zoltán Horváth, Tamás Kozsik, Máté Tejfel

for Clean programs in the future. This methodology could be supported by an
extension to Sparkle [11], the theorem prover tool for Clean, to make reasoning
about temporal properties of interactive, parallel or distributed Clean programs
possible.

References

1. Achten, P., Plasmeijer, R.: Interactive Objects in Clean. Proceedings of Implemen-
tation of Functional Languages, 9th International Workshop, IFL’97 (K. Hammond
et al (eds)), St. Andrews, Scotland, UK, September 1997, LNCS 1467, pp. 304–321.

2. Barendsen, E., Smetsers, S.: Uniqueness typing for functional languages with graph
rewriting semantics. Mathematical Structures in Comp. Sci. 6, pp. 579–612. 1996.

3. Butterfield, A., Dowse, M., Strong, G.: Proving Make Correct: IO Proofs in Haskell
and Clean. Proceedings of Implementation of Functional Programming Languages,
Madrid, 2002. pp. 330–339.

4. Chandy, K. M., Misra, J.: Parallel program design: a foundation. Addison-Wesley,
1989.

5. Dam, M., Fredlund, L., Gurov, D.: Toward Parametric Verification of Open Dis-
tributed Systems. Compositionality: The Significant Difference (H. Langmaack, A.
Pnueli, W.-P. De Roever (eds)), Springer-Verlag 1998.

6. Dijkstra, E. W.: A Discipline of Programming. Prentice-Hall Inc., Englewood Cliffs
(N.Y.), 1976.

7. Horváth Z.: The Formal Specification of a Problem Solved by a Parallel Program—a
Relational Model. Annales Uni. Sci. Bp. de R. Eötvös Nom. Sectio Computatorica,
Tom. XVII. (1998) pp. 173–191.

8. Horváth Z., Achten, P., Kozsik T., Plasmeijer, R.: Proving the Temporal Properties
of the Unique World. Proceedings of the Sixth Symposium on Programming Languages
and Software Tools, Tallin, Estonia, August 1999. pp. 113–125.

9. Horváth Z., Achten, P., Kozsik T., Plasmeijer, R.: Verification of the Temporal
Properties of Dynamic Clean Processes. Proceedings of Implementation of Functional
Languages, IFL’99, Lochem, The Netherlands, Sept. 7–10, 1999. pp. 203–218.

10. Kozsik T., van Arkel, D., Plasmeijer, R.: Subtyping with Strengthening Type In-
variants. Proceedings of the 12th International Workshop on Implementation of Func-
tional Languages (M. Mohnen, P. Koopman (eds)), Aachener Informatik-Berichte,
Aachen, Germany, September 2000. pp. 315–330.

11. de Mol, M., van Eekelen, M., Plasmeijer, R.: Theorem Proving for Functional
Programmers, Sparkle: A Functional Theorem Prover, Springer Verlag, LNCS 2312,
p. 55 ff., 2001.

12. Peyton Jones, S., Hughes, J., et al. Report on the Programming Language Haskell
98, A Non-strict, Purely Functional Language, February 1999.

13. Plasmeijer, R., van Eekelen, M.: Concurrent Clean Version 2.0 Language Report,
2001. http://www.cs.kun.nl/˜clean/Manuals/manuals.html

