
Compacting XML Documents

Miklós Kálmán, Ferenc Havasi, and Tibor Gyimóthy ?

University of Szeged

Abstract. Nowadays one of the most common formats for storing in-
formation is XML. The size of XML documents can be rather large, and
they may contain redundant attributes which can be calculated from
others. The main idea behind our paper is based on a relationship be-
tween XML documents and attribute grammars. Using this relationship
it is possible to define semantic rules for XML attributes using a meta-
language called SRML. With this metalanguage we decided to develop a
method for compacting XML documents. After compaction it is possible
to use XML compressors to make the compacted document smaller, thus
increasing the potential compression ratio of the compressors. Devising
the rules can be done manually or by a machine learning approach. Our
method can be viewed as a form of data mining, meaning that it can
find relationships between attributes which might not have been noticed
by the user beforehand.

1 Introduction

These days it seems that XML documents are becoming ever more important.
The number of applications capable of storing things in XML format is growing
quite rapidly. If the growth continues at this rate, XML documents will span
every area in computing.

XML documents can be quite large, but many systems can only handle
smaller files (e.g: embedded systems). Size is also important when an XML doc-
ument has to be transferred via a network. One solution is to compress the
documents using a general (e.g. zip) or XML compressor (XMill [11]). Unfortu-
nately the compressed size of the files may still be too large.

The XML document may of course contain dependencies which are not dis-
coverable by the above-mentioned compressors. One of these dependencies could
be a relationship between two attributes, where it might be possible to calculate
one from the other. Our method offers a solution to this problem, employing a
special (SRML: Semantic Rule Meta Language) file format for storing the rules.
These SRML rules describe how the value of an attribute can be calculated from
the values of other attributes. These rules are quite similar to those of the se-
mantic functions of Attribute Grammars, and can be used to compact the XML
document by removing computable attributes.
? Research Group of Artificial Intelligence, Hungarian Academy of Sciences,

Aradi vértanuk tere 1., H-6720 Szeged, Hungary, +36 62 544145, email:
{kalman,havasi,gyimi}@rgai.hu

138 Miklós Kálmán, Ferenc Havasi, and Tibor Gyimóthy

The generation of these SRML files can be done manually (if the relationship
between attributes is known) or via machine learning methods. The method
examines the relationship between the attributes and looks for patterns in them
using specific rules. We implemented our algorithm in JAVA in order to make the
modules more portable and platform independent. The whole implementation is
based on a framework system (every algorithm is considered as a plug-in).

During the testing of the implementation, the input XML files were com-
pacted to 70-80% of their original size, without loss of compressibility (e.g. the
XMill XML compressor could compress the compacted file with about the same
efficiency as the original document. Needless to say, the file which was compressed
after first being compacted was much smaller). The increased compressibility of
XML files is the main advantage of our method, apart from gaining a general un-
derstanding of the relationships between attributes. To test our new method we
used an XML exchange format called CPPML [4]. (CPPML is a metalanguage
which describes C++ programs) When a CPPML document was compacted via
this technique, followed by XMill, the compressibility ratio increased by 10% (of
the original compressed size). This could make the new method an useful part-
ner in future XML compressors. The method operates using manually generated
rules, but the effectiveness of an SRML file created via machine learning can
attain that of manual SRML generation.

In this article we examine the main idea previously published in [6], and
afterwards present a new result, that of rule generating via machine learning
methods.

In the following sections some background knowledge will first be provided.
Then an overview of our method will be given using examples to illustrate how
it works. Afterwards the modules of the implementation will be thoroughly de-
scribed along with their detailed function. Following this, a section will explain
how the learning of SRML files is achieved and the advantages these rules of-
fer. Finally, we round off the paper by mentioning related works and a brief
summary.

2 Preliminaries

In this section a basic introduction to XML files will be given along with the
necessary preliminaries for formal and attribute grammars. This will be needed
to better understand parts in the subsequent sections.

2.1 XML

XML documents are very similar to html files, as they are both text-based. The
components in both are called elements, which might contain further elements
and/or text, or they may be empty. Elements may have attributes like the at-
tribute href of html tag a. In Figure 1 there is an example for storing a numeric
expression in XML format.

Compacting XML Documents 139

<expr>

<multexpr op="mul" type="real">

<expr type="int"> <num type="int">3</num> </expr>

<expr type="real">

<addexpr op="add" type="real">

<expr type="real"> <num type="real">2.5</num> </expr>

<expr type="int"> <num type="int">4</num> </expr>

</addexpr>

</expr>

</multexpr>

</expr>

Fig. 1. A possible XML form of the expression 3*(2.5+4).

2.2 Formal languages and Attribute grammars

After defining the XML structure, we will introduce some background knowl-
edge on the grammars of formal languages. Defining a basic syntax can be done
through a formal grammar. A formal grammar [1] is a 4-tuple G=(N,T,S,P),
where N is the set of nonterminal symbols, T is a set of terminal symbols, S a
start-symbol and P a set of transformation rules. Given a grammar, a derivation
tree can be generated based on a specific input. Next the Attribute Grammars
have to be introduced since they are quite similar to SRML rules. An Attribute
Grammar [7] contains a context free grammar, attributes and semantic rules.
With the help of attribute grammars, attributed derivation trees can be created
according to their attributes based on a specific input.

2.3 The relationship between XML and Attribute Grammars

Examining the attributed derivation tree and the DOM tree in Figure 2, it is clear
that the XML document can be considered as an attributed derivation tree as
well. Actually, the following analogy exists between AG and XML documents.
In Attribute Grammars, the Nonterminals correspond to the elements in the
XML document. Syntactic Rules are presented as an element type declaration
in the DTD of the XML file (DTD can define the structure of similar XML
documents like books or CPPML descriptions). An attribute specification in
the AG corresponds to an attribute list declaration in the DTD. In addition to
this there is an important concept in Attribute Grammars which has no XML
counterpart; the semantic functions. It might be useful to apply these semantic
functions in the XML environment as well.

The attribute instances and their values are stored directly in the XML
document files. If it were possible to define semantic functions, it would be
enough to store the rules applying to specific attributes, since their correct values
could then be calculated. With the help of this it would then be possible to
avoid having to store those attributes which could be calculated. Our idea was

140 Miklós Kálmán, Ferenc Havasi, and Tibor Gyimóthy

to define the XML attributes with the aid of semantic functions. The definition
of semantic rules would be an integral part of XML document files.

3 An approach for the compaction of XML documents

3.1 Compacting / Decompacting

After mentioning the general similarities concerning AG and XML, a simple ex-
ample will be given to show how attributes of XML documents can be computed.

rules
semantic

XML document

complete

XML document

reduced
reduce

complete

In the figure above it is clear that the decompacting (complete) procedure
expands the document and recreates the original XML document. The process

Compacting XML Documents 141

uses the semantic rules to calculate those attribute values which were previ-
ously provided. Every attribute which was not defined in the compacted XML
document will be restored if there is a rule in the semantics rules set for it.

The compacting (reduce) procedure does just the opposite. The input used is
a complete XML document with an attached semantic rules file. Every attribute
which can be correctly calculated using the attached rules will be removed.
This results in a reduced, compacted XML document. If the semantic rule for
a given attribute does not give the correct value the attribute is not removed,
maintaining the document’s integrity.

After the XML document has been compacted it can then be compressed
using gzip or XMill (XML compressor) without loss of compression efficiency.

3.2 The SRML Meta language

When we apply the compacting/decompacting procedures, the semantic func-
tions have to be stored. An XML-based metalanguage called SRML (Semantic
Rule Meta Language) has been defined to describe semantic rules [6]. The DTD
of SRML files is as follows:

<!ELEMENT semantic-rules (rules-for*)>

<!ELEMENT rules-for(rule*)>

<!ATTLIST rules-for root NMTOKEN #REQUIRED >

<!ELEMENT rule(expr)>

<!ATTLIST rule element NMTOKEN #REQUIRED

attrib NMTOKEN #REQUIRED>

<!ELEMENT expr (binary-op | attribute | data | no-data | if-element

| if-expr | if-all | if-any | current-attribute

| position)>

<!ELEMENT binary-op (expr, expr)>

<!ATTLIST binary-op

op (add | sub | mul | div | exp | equal | not-equal |less

| greater | or | xor | and | nor | contains | concat

| begins-with | ends-with) #REQUIRED >

<!ELEMENT position EMPTY>

<!ATTLIST position element NMTOKEN "srml:all"

from (begin | current | end) "begin">

<!ELEMENT attribute EMPTY>

<!ATTLIST attribute element NMTOKEN "srml:this"

num NMTOKEN "0"

from (begin | current | end) "current"

attrib NMTOKEN #REQUIRED>

<!ELEMENT if-element (expr, expr)>

<!ATTLIST if-element from(begin | end) "begin">

<!ELEMENT if-all (expr, expr, expr)> <!-- cond,if, else-->

<!ATTLIST if-all element NMTOKEN "srml:all"

attrib NMTOKEN "srml:all" >

<!ELEMENT if-any (expr, expr, expr)> <!--cond,if,else-->

<!ATTLIST if-any element NMTOKEN "srml:all"

attrib NMTOKEN "srml:all" >

142 Miklós Kálmán, Ferenc Havasi, and Tibor Gyimóthy

<!ELEMENT current-attribute EMPTY>

<!ELEMENT if-expr (expr, expr,expr)> <!-- condition , if, else -->

<!ELEMENT data (#PCDATA)>

<!ELEMENT no-data EMPTY>

<!ELEMENT extern-function (param)*>

<!ATTLIST extern-function name NMTOKEN #REQUIRED>

<!ELEMENT param(expr)>

This DTD can be regarded as a formal grammar: the elements become the
nonterminals and the element definitions are the formal rules. The following part
will describe the meaning of each SRML element defined in the DTD :

semantic-rules: This is the root element of the SRML file
rules-for: This element collects the semantic rules of a transformation rule. In the

DTD there is only one definition for each element, hence a transformation rule can
be defined via this element (this takes the left side of the transformation rule).
This is the root attribute of the rules-for expression.

rule: This element defines the semantic rule. It must be say which attribute of which
element the semantic rule is being defined and provide the value in the expr. If
the value of element is srml:root then an attribute of the context’s root is being
defined.

expr: The expr expression can be a binary expression (binary-op), an attribute (at-
tribute), a value (data or no-data), a conditional expression (if-expr, if-all, if-
any), a syntax-condition (if-element, position) or an external function call (extern-
function).

if-element: The definition of a DTD element can contain regular expressions (using
the +,*,? symbols). This element allows for the testing of the inputs form. It
contains two expr elements. Like all conditional expressions the value of the if-
element can be true or false depending on the following: if the name of the first
exprth child (element) is equal to the second expr value then the return value
is true, otherwise it is false. The from attribute defines the starting point of the
examination. This also allows us to examine the last child without knowing the
actual number of siblings.

binary-op: This element is a simple binary expression.
position: Returns a 0-based index that defines the current attribute’s position relative

to its siblings, taking into account the element attribute. The possible directions
are begin and end. It is possible to use the srml:all constant as well, which results
in an index describing which child the element is on the DOM level. If an element
name is provided, then the returned index will be n, where the examined element
has exactly n predecessors or successors with the same name (depending on the
direction traversed).

attribute: The attribute is defined by the element, attrib, from and num attributes.
In the the environment this is the numth element with the name of element’s value
(if this is srml:any then it can be anything, if it is srml:root then an attribute of
the root element is being referred to), the direction (from) can be begin , end ,
current (from the current index). If no such attribute exists the return value will
be no-data.

if-expr: This is a traditional conditional expression. The return value will be based
on the value of the first expr expression. If the first expression is evaluated then
the return value will be the that of the second expression, otherwise the value will
be the that of the third expression.

Compacting XML Documents 143

if-all: This is an iterated version of the previous if-expr. The value of the first expr is
calculated with the values of the matching attributes (everything that matches the
element and attribute mask, which can be a given value or srml:all). To refer to
the value of the current attribute the current-attribute element should be used. If
the first condition is true (first expr) for all matching attributes then the value will
be the that of the second expr, otherwise it will be that of the third expression.

if-any: This is similar to if-all, but here it is enough that at least one attribute matches
the condition.

current-attribute: This is the iteration variable of if-any and if-all .
data: This element has no attributes and usually contains a number or a string.
no-data: This element says that the value of this attribute cannot be defined. It is

usual to apply this in specific branches of conditional expressions.
extern-function: This element calls an external function which depends on the im-

plementation. This makes the SRML more extendable.
param: Defines the parameter of the extern-function.

A correct SRML definition has to be consistent. This means that an attribute
instance can only have one corresponding rule. Examples of this can be found
on page 147.

4 SRMLTool: a compactor for XML documents

We have implemented a tool for the compaction of XML documents. This tool is
based on semantic rules written in SRML, describing the attributes of the XML
documents. It means that the inputs of the tool are an XML document and
an SRML file to define semantic (computation) rules for some attributes of the
document. The output is a reduced document (some attributes are removed).
Naturally the tool is able to reconstruct the original XML file from the reduced
document. Figure 3(a) shows the modular structure of the package.

4.1 The Reduce algorithm (compacting)

During the implementation of the Reduce (compacting) algorithm, the func-
tion of the Complete (decompacting) algorithm had to be considered. If there
is a rule for a non-defined attribute it has to be marked somehow. If this is
ignored, the Complete algorithm will insert a value for it and make the com-
paction/decompaction process inconsistent. To remedy this problem the srml:var
attribute is introduced into the compacted document. This attribute marks the
name of those attributes which were not present in the original document. Below
is a simple example for this:

<book name="mybook">

<section author="authorID" footNoteID="1"/>

<section author="authorID" footNodeID="1"/>

<section/>

</book>

Supposing there are rules for section.author and section.footNoteID the out-
put would be the following (the third section does not have these attributes so
they must be marked):

144 Miklós Kálmán, Ferenc Havasi, and Tibor Gyimóthy

<book name="mybook">

<section/>

<section/>

<section srml:var=" author footNoteID " />

</book>

There is another interesting point of the implementation: there may be loops
in the dependencies. For example if the rules A.x = B.x, B.x = C.x and C.x =
A.x are given there is an exact rule for every attribute, but only two of them
can be deleted if it needs to be restored later. To resolve dependency issues the
following algorithm is used:

1. Create a dependency list (every attribute has both input and output de-
pendencies, the input dependencies being those attributes upon which it
depends and the output are those that depend on it. The dependencies are
represented as vertices)

2. Look for an attribute that has no input or output vertex. If there is one then
it can be deleted.

3. Look for an attribute which has no output vertex.
4. If there is one, delete the attribute and all its input vertices.
5. If there isn’t one like this, try to find one which has only output vertices (i.e.

it doesn’t depend on other attributes).
6. If there is one (that has only output vertices), keep this attribute and delete

the vertices (keeping means that its added to a vector)
7. If there isn’t one like this (circular reference), choose the first attribute, keep

it and delete its vertices.
8. If the dependency list is empty then END, else Goto 2

The algorithm always terminates since the dependency list is always emptied.
The vector keep contains those attributes which will not be removed. Note: This
algorithm is not the most optimal solution, but with it reduction is safe and the
completion process can be performed without any losses.

4.2 The Complete algorithm (decompacting)

The implementation of the algorithm starts off by reading both the XML file
and SRML file into separate DOM trees. This saves a lot of time on operations
performed later. Then the XML DOM tree is processed using an inorder tree
visit routine that examines every node and every attribute. The purpose of this
examination is to find out which attributes have corresponding SRML rules. If
an attribute having an SRML rule is found it is stored in a vector (processVec),
which is later processed. The processVec vector is used for decompacting, which
is a two-stage operation. First a vector is created with those attributes having
corresponding rules, then in stage two the vector elements are processed. This
speeds up the decompacting since the DOM tree is visited only once. Afterwards
tree pointers are used to access the nodes.

Compacting XML Documents 145

5 Learning SRML rules

In some cases the user does not know the relationship between the attributes
of an XML document so he cannot therefore provide SRML rules. To overcome
this problem the SRMLGenerator module was created, a module which plays an
active part in the SRMLTool package. The SRMLGenerator module is based on
a framework system so that it can be expanded later with plug-in algorithms.
Every plug-in algorithm must fit the interface defined by the SRMLInterface. The
process of learning is as follows: the program reads all the plug-in algorithms
and executes them sequentially. After one of them has exited it marks those
attributes for which it could find an SRML rule to in the DOM tree, making
the next algorithm only process the attributes which have no rules. Figure 3(b)
shows the process of learning.

Before describing the learning algorithms which have been implemented so
far, the purpose and advantage of learning SRML rules will be presented.

SRML files have other crucial uses apart from making the XML files more
compact. One of these is that SRML enables the user to discover relationships
and dependencies between attributes, dependencies which might not have been
seen by the user previously. In this case of course the SRML file has to be
created dynamically using machine learning and other forms of learning. The
SRML files created by machine learning can be an input to other systems such
as decision-making systems, where the relationship between specific criteria is
examined. It may be employed in Data Mining and other fields where relation-
ships in large amounts of data are sought. The SRMLGenerator module in a
sense ”understands” the XML file and saves this knowledge in the SRML file.

5.1 The SRMLGenerator module’s learning algorithms

The SRMLGenerator currently contains five plug-in algorithms. These algo-
rithms can be expanded with additional plug-in algorithms thanks to our frame-
work system. A new plug-in algorithm can be created simply by creating a class
which conforms to the appropriate interface.

SRMLConstantRule This is the simplest learning algorithm in the package.
This algorithm uses statistical analysis to retrieve the number of attribute in-
stance values and then decides whether to make a rule for it. For instance this
algorithm searches for A.x = 4 and A.B.x = 4 type of rules. The difference be-
tween these two types is that the first is synthesized while the second is inherited
(see Figure 4(a)). The decision is based on whether the size of the new rule would
be bigger than that of the size decrease achieved by removing the attributes. The
tree in Figure 4(b) is used in evaluations performed by the algorithm.

To get a clearer understanding of the tree a brief explanation will be provided
of how it is built. First the input XML file is parsed and each attribute occur-
rence is examined. All occurrences have two counters incremented in the tree:
/elementName/ sum /

146 Miklós Kálmán, Ferenc Havasi, and Tibor Gyimóthy

attribName/value (synthesized case) and /parentElementName/elementName/
attribName/value (inherited case).

After this stage the exact benefit of generating SRML rules in synthesized
or inherited form can be calculated using the created statistical tree. The better
one will be chosen (if a rule can be generated).

Copy Rules These algorithms search for A.x = B.x rules. The time and mem-
ory requirements of searching for this type of rule in one stage are very high.
That is why the implementation was separated into three modules: SRMLCopy-
ChildRule (x = B.x) SRMLCopyAttribRule (x = y) and SRMLCopyParentRule
(B.y = x). The implementation uses similar statistical trees like above.

SRMLDecisionTree The SRMLDecisionTree plug-in is by far the most ad-
vanced in the currently implemented algorithms. It makes use of machine learn-
ing [8] in order to discover relationships and builds if-else decisions using a binary
tree similar to ID3. At the start of the algorithm it creates a statistical DOM
tree to select those attributes that should be further examined. This is achieved
by using a heuristic dominance1 function. Those attributes which are more dom-
inant (compared to other attributes) are saved with both rule contexts. These
contexts are saved to files, each containing one attribute and all its occurrence
contexts. The next step is now to convert these files into a learning table form.
This is needed because converting it not only cuts down the processing time,
but also allows one to use external learning modules which use learning tables
as inputs. Every attribute which needs to be learned has a separate file and will
be processed later. The table form is used because, by doing this, external ma-
chine learners can also be used to find new relationships. In the implementation
a decision tree similar to ID3 is used. The only difference in our case is that
the tree depth is limited to 3 (this is limited because the speed of the current
learning algorithm would take too long and statistics show that in most cases a
depth of 3 is enough to achieve acceptable results) and a dominance function is
employed.

6 Experimental results

The testing of our implementation was done via CPPML [4], an XML exchange
format that is used as an output of Columbus Reverse Engineering package [10].
Our method can be applied to non-CPPML XML files as well as long as the
elements contain attributes, like an e-book with chapters and word counts as
attributes or an Oracle database dump.
1 This heuristic dominance function was written by us and can be changed and opti-

mized. Currently an attribute is dominant if the attribute count is larger than the
average count. This means that if a value of an attribute occurs more times than any
other value then it becomes dominant, since it might be worth splitting the tree into
two, based on this value. One part would be where the value of this attribute equals
the dominant value and the other where it does not, making an if-else statement.

Compacting XML Documents 147

6.1 A real sized case study: CPPML

Before showing the results of our method the CPPML [4] language should be
discussed. All the input files were CPPML files. CPPML files can be created from
a CPP file. CPPML is a meta language capable of describing the structure of
programs written in C++. Creating CPPML files can be done via the Columbus
Reverse engineering package (CPPML is XML based). [10]

To illustrate how CPPML works let us consider the following C++ program:

class _guard : public std::map<std::string, _guard_info> {

public: void registerConstruction(const type_info & ti) {

(*this)[ti.name()]++ ;

}

...

};

The CPPML form of the program can be the following:

<class id="id20097" name="_guard"

path="D:\tm\SymbolTable\Input\CANGuard.h"

line="71" end-line="90" visibility="global" abstract="no"

defined="yes"

template="no" template-instance="no" class-type="class">

<function id="id20102" name="registerConstruction"

path="D:\tm\SymbolTable\Input\CANGuard.h" line="75"

end-line="76" visibility="public"

const="no" virtual="no" pure-virtual="no" kind="normal"

body-line="75" body-end-line="76"

body-path="D:\tm\SymbolTable\Input\CANGuard.h">

<return-type>void</return-type>

<parameter id="id20106" name="ti"

path="D:\tm\SymbolTable\Input\CANGuard.h"

line="74" end-line="74" const="yes">

<type>type_info&</type>

</parameter>

</function>

...

</class>

...

It is quite obvious that in the CPPML definition a lot of attributes can be
calculated or estimated via other attributes. One of these is the kind attribute
which stores the type of the function. If the function name matches that of the
class name then it is a constructor, but if the function name starts with a ∼ then
it is a destructor.

Expressed in SRML form, this might look like the following:

<rules-for root="class">

<rule element="function" attrib="kind">

148 Miklós Kálmán, Ferenc Havasi, and Tibor Gyimóthy

<expr>

<if-expr>

<expr>

<binary-op op="equal">

<expr><attribute attrib="name"/></expr>

<expr><attribute attrib="name" element="srml:root"/>

</expr>

</binary-op>

</expr>

<expr><data>constructor</data></expr>

<expr>...</expr>

</if-expr>

</expr>

</rule>

</rules-for>

Only valid rules can be defined, but sometimes it is possible to estimate rules
(the reduce procedure will only delete those attributes which match a pattern)
Consider the following estimation:

1. A function declaration starts and ends on the same line
2. The implementation of a class’s function is usually in the same file as the

class itself
3. The parameters of a function are usually in the same file, perhaps somewhere

in the same line

Expressed in SRML form these ”estimated” SRML rules may look like the fol-
lowing:

<rules-for root="function">

<rule element="parameter" attrib="end-line">

<expr><attribute attrib="line"/></expr>

</rule>

<rule element="parameter" attrib="line">

<expr><attribute attrib="line" num="-1"/></expr>

</rule>

<rule element="parameter" attrib="path">

<expr><attribute attrib="path" num="-1"/></expr>

</rule>

</rules-for>

After running the compaction module the following XML document is pro-
duced:

<class id="id20097" name="_guard"

path="D:\CAN_Test\SymbolTable\Input\CANGuard.h" line="71"

end-line="90" visibility="global"

abstract="no" defined="yes" template="no"

template-instance="no" class-type="class">

<function id="id20102" name="registerConstruction" line="75"

Compacting XML Documents 149

end-line="76" visibility="public"

const="no" virtual="no" pure-virtual="no" kind="normal"

body-path="D:\CAN_Test\SymbolTable\Input\CANGuard.h">

<return-type>void</return-type>

<parameter id="id20106" name="ti" line="74" const="yes"

ellipsis="no">

<type>type_info&</type>

</parameter>

</function>

...

</class>

The rules described above produced a compaction ratio of 68.9%, since the
original fragment was 2.180 bytes and the compressed was 1.502 bytes. This ratio
can be improved further with the introduction of new SRML rules.

6.2 Compacting CPPML with SRML rules created by hand

The results achieved using SRML files created by hand are shown in Figure 5.
Input files were in CPPML form. The (C) bracket indicates that the compressors
were applied to the compacted version of the XML file.

6.3 Compacting CPPML with machine learning SRML rules

In Figure 6 a comparison is made between the efficiency of the machine-learned
and hand-generated SRML rules. In many cases SRML generated via machine
learning approaches the compaction ratio of a hand-generated SRML. These
results can be improved by introducing new plug-in algorithms into the SRML-
Generator module. The execution order of the plug-ins matter. That is why the
machine learning (SRMLDecisionTree) plug-in is used first since this seems to
provide the optimal solution, an observation based on experiment. The reason
why this could be the most optimal is that it employs a dominance function in
the decision trees as well and seems to generate more rules.

6.4 Resource requirements of the tool

For testing, a Debian Linux environment was used on a PC (AMD Athlon XP
1600+ 512M DDR). The package requires about 200MB of memory since the
DOM tree takes up a lot of space. The AppWiz file was compacted in approxi-
mately 2 minutes and decompacted in 30 seconds. The execution time was long
in the case of machine learning (SRMLDecisionTree) since it takes some time
for the program to fully understand the relationship between the attributes. De-
pending on the complexity and level of recursion, the execution time varied from
2 hours to 30 hours.

150 Miklós Kálmán, Ferenc Havasi, and Tibor Gyimóthy

7 Related Work

The first notion of adding semantics to XML documents was introduced in the
paper Adding Semantics to XML [9], which had its own SRD (Semantics Rule
Definition) consisting of two parts: the first one describes the semantics at-
tributes2, while the second one gives a description of how to compute them.
SRD is also XML-based. The main difference between the approach outlined in
[9] and ours is that we provide semantics rules not just for newly defined at-
tributes but also for real XML ones. Our approach makes the SRML description
an integral part of XML document files. This kind of semantics definition could
provide a useful extension for XML techniques. In SRD the attribute definition
of elements with a + or * sign is defined in a different way from the ordinary
attributes definition and can only reference the attributes of the previous and
subsequent element. The references in our SRML description are more generic,
and all expressions are XML-based.

Another article which can be viewed as a related work is the Learning seman-
tic functions of attribute grammars [5] paper, which provides a way of learning
attribute grammars. The learning problem of semantic functions is transformed
to a propositional form and the hypothesis induced by a propositional learner
is transformed back into corresponding semantic functions. This method is sim-
ilar to ours as it learns and uses semantic functions based on examples, but it
only works on attributes with very small domains. It searches for precise rules
in contrast to our method, which can use approximated rules as well.

8 Summary

One of the biggest problems associated with XML documents is that they can
become rather large. Our method can make their compression more effective.
This method is based on a relationship between attribute grammars and XML
documents. Using the SRML metalanguage a 20-30% size decrease can be at-
tained without loss of information or compressibility. The package we have im-
plemented is able to compact and decompact XML files using existing rules, or
it can generate rules. These rules can be used for compacting a document or for
”understanding” it (e.g. Data Mining).

References

1. Moll R.N. Arbib M.A. Kfoury A.J., An introduction to formal language theory,
1988.

2. H. Alblas, Introduction to attribute gammars, Springer Verlag, In Proc. of SAGA
(H. Alblas and B.Melichar eds.) LNCS 545 (1991), 1–16.

3. T. Bray, J. Paoli, and C. Sperberg-McQueen, Extensible markup language, (XML)
1.0 (W3C recommendation) (feb 1998).

2 These are newly defined attributes which differ from those in XML files.

Compacting XML Documents 151

4. R. Ferenc, CPPML - an implementation of the Columbus Schema for C++.
5. T. Gyimóthy and T. Horváth, Learning semantic functions of attribute grammars,

Nordic Journal of Computing 4 (1997), no. 3, 287–302.
6. F. Havasi, XML semantics extension, Acta Cybernetica 15 (2002), no. 2, 509–528.
7. D. E. Knuth, Semantics of context-free languages, Mathematical Systems Theory

2 (1968), 127–145.
8. T. Mitchell, Machine learning, McGraw-Hill, 1997.
9. G. Psaila and S. Crespi-Reghizzi, Adding Semantics to XML, Second Workshop on

Attribute Grammars and their Applications, WAGA’99 (Amsterdam, The Nether-
lands) (D. Parigot and M. Mernik, eds.), INRIA rocquencourt, 1999, pp. 113–132.

10. Á. Beszédes Á. Kiss M. Tarkiainen R. Ferenc F. Magyar, Tool for the reverse
engineering of large object oriented software, SPLST (2001), 16–27.

11. XMill, http://www.research.att.com/sw/tools/xmlill/.

152 Miklós Kálmán, Ferenc Havasi, and Tibor Gyimóthy

type=real

type=real op=mul expr expr

multexpr

expr

type=int num

op=addtype=real3 expr

num

2.5type=real

type=real type=int num

expr

4type=int

type=int

addexprtype=real

4

expr

multexpr

addexpr

expr

num

expr

num

3

MUL

expr

num

2.5

ADD

type=int

type=int

type=real

type=real

type=real

type=real

type=int

type=int

type=real

type=real

expr

Fig. 2. (a) XML document DOM tree, (b) Attributed Derivation Tree

Compacting XML Documents 153

ConstantRule

CopyRule(s)

XMLComplete

XMLReduce

SRMLGenerator

description

Complete

XML

Document

Reduced

XML

Document

SRML

SRML Tool Package

DecisionTree

Find correpondes
between not marked nodes

Mark in DOM

Generate SRML

Plugins

Extended

DOM

tree

SRML description

XML input

Fig. 3. (a) SRMLTool package, (b) Learning SRML Rules

154 Miklós Kálmán, Ferenc Havasi, and Tibor Gyimóthy

D E F G

CB

A

B

A B

A_sum_

x y x y

a
12

b
4

a
5

c
3

...

...

...

...

......

Fig. 4. (a) The two contexts, (b) The statistical tree of SRMLConstantRule

File SymbolTable Jikes AppWiz

Orig 399321 2233824 3547297
gzip (ratio) 30460 (7.62%) 177051 (7.92%) 244174 (6.68%)

XMill (ratio) 19786 (4.95%) 114275 (5.11%) 145738 (4.10%)
Comp (ratio) 296193 (74.10%) 1736267 (77.70%) 2238308 (63.10%)

gzip(C) (ratio) 26308 (6.58%) 160609 (7.18%) 206522 (5.82%)
XMill(C) (ratio) 18008 (4.50%) 108458 (4.85%) 134217 (3.78%)

Fig. 5. Compaction chart using manual rules

Compacting XML Documents 155

Filename Manual Machine Diff

SymbolTable (399321) 296193, 74.10% 313873, 78.60% 17680, 4.42%
Jikes (2233824) 1736267, 77.70% 1821228, 81.52% 84961, 3.80%

AppWiz (3547297) 2238308, 63.10% 2773946, 78.19% 535656, 15.10%

Fig. 6. A comparison of machine learned and hand-generated rules

