
An architecture for building collaborative tools
in Java

YC Nuckchady and J Nummenmaa

Department of Computer Science
University of Tampere

Finland
{vik, jyrki}@cs.uta.fi

Abstract. To date, there are surprisingly few collaborative applications
that exploit the accessibility of the Internet. The main reason behind this
is that it is rather difficult and time consuming to build such one-off ap-
plications. In this paper, we introduce an architecture built in Java that
would allow rapid and easy development of collaborative applications.
This architecture also provides a feature that can dynamically rewire
the collaborators in order to achieve greater efficiency. This architecture
was tested with Fujaba[8] case tool by enhancing some of it’s single user
capabilities to a level of real-time multi-user collaboration. Indeed, this
approach proved to be a reliable solution to quickly building and deploy-
ing collaborative applications, and future work would be on making it
more flexible and more efficient.

1 Introduction

Collaboration has existed since people have been able to communicate with each
other. The advent of the internet has provided people with a communication
tool that makes the great geographical distance separating people on the planet
insignificant if not irrelevant. Nowadays someone can communicate an idea or a
decision almost instantly via an email or an instant messenger service. Collabo-
ration has never been so close and powerful as it is today. The world wide web
provides us today with a collaboration environment platform that can span the
whole globe.

To be able to collaborate on the internet one must have tools that allow him
or her to have a presence on the web. To date there is a wide variety of devices
that enable one to connect to the web, desktop computers, laptops, palmtops and
phones. Each of these devices has its limitations in terms of memory capacity,
processing speed and network connectivity speed. These factors are crucial in
determining once presence on the web.

There are already some forms of collaborations on the internet, primarily
file sharing and game playing. For other forms of collaboration, the participants
make use of assistive technology such as news forum, chat, email and instant
messaging to communicate ideas, for discussions and make decisions about a

An architecture for building collaborative tools in Java 175

common project. What is lacking is an appropriate software architecture that
will facilitate the creation and deployment of collaboration tools.

In this paper we aim to introduce an approach to designing and building
collaborative tools where data is shared and updated in real time.

2 Collaboration Model

A collaboration environment should allow any number of participants from any
geographical locations that can access the Internet communicate ideas and de-
cisions in real-time. Also, the environment should be non-discriminative with
regards to connection devices and should allow for the manipulation of the col-
lectively shared data. For the exercise of this thesis, we shall take as an example
a certain number of collaborators spread over Finland, Estonia and Hungary
all manipulating a mindmap (the shared data) using some graphical editor (the
collaborative tool). Our collaborative environment is made up of Participants1

and Coordinators2. Participants exchange information and Coordinators com-
municate to the Participants through the use of Capsules3.

The type of interconnection between the participating parties (Participants)
is illustrated in Fig. 1 below. As it can be noted, data is replicated at all par-
ticipating sites and each of these sites is connected to two Coordinators, one of
which serve as a backup incase the primary one fails. This type of arrangement
is an extension of a centralised network configuration. The central point or point
of convergence (PoC) is the primary Coordinator which regulates the commu-
nication among all the peers. This centralised feature is favoured over a mesh
topology, as in a peer-to-peer network, because in the latter case it imposes that
the communication devices should be powerful enough to sustain a high number
of connections simultaneously for the duration of the session. This restriction is
discriminatory and hence against our vision of a collaborative environment.

Furthermore, the interconnection topology is not rigid for the duration of a
session. In order to achieve greater efficiency in terms of perceived responsive-
ness, the Coordinator can trigger the creation of new Coordinators and instruct
selected Participants to rewire to these new Coordinators. From Fig. 2 and Fig. 3,
we can observe that a rewiring of Participants Fin 1, Fin 2 and Fin 3 can achieve
a better overall response time. A possible reconfiguration of the interconnection
network is illustrated in Fig. 4.

3 Description of the components

3.1 Coordinator

The Coordinator operates as a seperate process in the collaborative application
so that if the Participant owning the machine exits the collaborative session, the
1 Subsection Participant in section Description of components.
2 Subsection Coordinators in section Description of components.
3 Subsection Capsules in section Description of components.

176 YC Nuckchady and J Nummenmaa

COLLABORATOR

COLLABORATOR COLLABORATOR

COLLABORATOR COLLABORATOR

Replicated
Data

Replicated
Data

Replicated
Data

Replicated
Data

Replicated
Data

Coordinator

Coordinator
Backup

Fig. 1. Favoured topology of interconnection between participants.

Coordinator can continue without interruption. The Coordinator also behaves
as an invisible participant in the session. That is, it owns a copy of the shared
data and all the business rules required to update it. The Coordinator’s central
role is used to sychronize operations among the Participants whether through
the use of timestamps, sequence numbers, or as a clock synchronizing server.
The Coordinator is made up of a number of services that accomplish the specific
tasks as described below.

The Main Service The Main Service listens and accepts requests to connect
from new Participants. It authenticates these connections by validating a user-
name/password pair that the participant transmits for first time. It also verifies
the signature of the application for the current session. Since the Coordinator
may be the same for different collaborative applications, it is necessary to inform
the Participant that it might have connected to an inappropriate session. If the
authentication is successful, the Main Service, hence the Coordinator sends the
IP address and port number of the backup Coordinator in service. Indeed, if the
session has just one Participant, then the new Participant is automatically made
the backup Coordinator. In fact, the primary Coordinator triggers the creation
of the backup on the machine of the new Participant if it is viable. The new Par-
ticipant is also given the port number it must connect to in order to receive data
update messages. Moreover, the Participant also transmits in the same bundle
of data containing the username, a request for the View Update Service. This

An architecture for building collaborative tools in Java 177

Internet

Fin 1

Fin 2

Fin 3

Est 1

Est 2

Est 4

Hun 2 Hun 3

Point of convergence

20ms

9ms 10ms

300ms

110ms

200ms

120ms

310ms

Est 3

300ms

350ms

Hun 1

Fig. 2. A configuration illustrating the remoteness of the participants with respect to
the Coordinator.

optional service relates to the order of graphical actions made by other partici-
pants. This service provides a presence of the collaborators and gives a feedback
about their doings and regions of interests on the shared data. In return, the
Coordinator adds to the bundle of reply data, the port of that requested ser-
vice as well as the compulsory Administration and Data services. Finally, the
connection is transformed to a Connection Object and is added to a queue of
already connected Participants. A Connection Object is one which can be used
to write to, and read from a specific Participant.

Also, when a new Participant joins the session, it must be updated with an
accurate copy of the data. To this end, all distribution of update capsules is frozen
and incoming ones buffered. In the mean time, the new Participant is given a
serialized copy of the shared data. When the transfer has completed successfully,
all the operations resume as normally. This ensures that all Participants are
updated at the same time. Fig. 5 below resumes the operations of this service.

The Data Service The Data Service holds a reference to the queue of con-
nection objects mentioned above and a reference to a queue of received data
capsules. The queue of Connection Objects is periodically swept from one end
to the other reading capsules that have been sent by the Participants at the
other ends. The Capsules are then inserted in the queue of capsules according
to the sychronization data embedded inside them. The other role of this service
is to pop the ordered queue and execute the contents of the capsules. It must be

178 YC Nuckchady and J Nummenmaa

Fin 1

Fin 2

Fin 3

110ms

120ms

200ms

4ms

4ms

5ms

5ms

5ms

5ms

Remoteness to point
of convergence

Remoteness with respect
to other participant

Internet

Fig. 3. Remoteness of Participants with respect to each other and the Coordinator.

stressed that this service only receives information concerning the shared data.
If the embedded operation requires an update of the data, then it is executed by
the Protocol Analyser Module attached to this service. In case that the operation
is successful, the local copy of the shared data is updated as a consequence and
the operation is broadcasted to all Participants so that the new state is reflected
on their individual copies. However, if a new Participant has been accepted while
the operation is executing locally, then the operation is allowed to complete on
the primary Coordinator before the new Participant is uploaded a copy of the
data. Subsequently, all the Connection Objects except the last one in the queue
are updated with the last operation popped from the buffered queue of capsules.
At this stage, all Participants including the new one would have an identical copy
of the shared data. In case the operation fails for some reason, then the exception
is caught by this service and only the Participant which requested that operation
is informed of it’s failure with some appropriate feedback. This prevents other
participants from being littered with exceptions that is of no concern to them.
Indeed, this approach to collaboration allows only successful update operations
to be broadcasted. Fig. 6 illustrates the components and operations of the Data
Service.

The Administration (Admin) Service This service is identical in structure
to the Data Service mentioned above. It periodically polls all the Participants
by requesting from them to measure the relative perceived responsiveness with

An architecture for building collaborative tools in Java 179

Fin 2

Fin 3

Est 4

Est 3

Est 1

Fin 1

Est 2

INTERNETISLAND

ISLAND

ISLAND

Hun 1

Hun 3

Hun 2

Fig. 4. Islandisation of the interconnection network into subnets.

respect to all the other Participants. This reading is a combination of the free
memory footprint available in the Java Virtual Machine and the round trip
time for a trivial message sent to another participant. Next, they each return
to the admin service the measurements embedded in a capsule which is read by
the Capsule Reader Thread shown in Fig. 6 above. The Capsules are queued.
Then each of them is popped from queue and fed to an algorithm that tries
to find the optimal configuration of interconnections of the Participants. If a
significantly better arrangement is discovered, then the Admin Service instructs
all the Participants to reconnect according to the new map of interconnections.
It must be noted that there is no benefit if the islandisation process illustrated in
Fig. 4 above occur too frequently. The other functionality of the Admin Service
is to monitor the liveliness of all the other services, except for the Main Service
which is the parent of all services. If one of the monitored services dies for some
reason, this service restarts it. The services that requires monitoring can be
parametrized before launching the Coordinator.

The View Update Service This service is reponsible for distributing graphical
related information to those participants that have subscribed to them when
they entered the session for the first time. The Main Service gives to this service
a reference to the Connection Object representing that Participant. The View
Update Service then adds that reference to a second list of Connection Objects,
which is a subset of the ones mentioned in the Admin or Data Service. This

180 YC Nuckchady and J Nummenmaa

Capsule

New Connection Object

Capsule

+ Username/Password
+ Application signature
+ View Update Service (Y/N)

+ Backup Coordinator:

+ Admin Port
+ View Update Service Port

+ Data Port

Queue of Connection Objects

Validate

New Participant

 IP address / Port

Fig. 5. Illustrating the situation when the Main Service accepts and registers a new
Participant.

An architecture for building collaborative tools in Java 181

Operations Analyser Module

Capsule Reader Thread

Capsule Interpreter Thread

Queue of Capsules

Reference to the Queue of Connection Objects

Fig. 6. Components and Operations of the Data Service.

182 YC Nuckchady and J Nummenmaa

service is a separate stream of data to those that affect the state of the shared
object as not all collaborators might want to be informed of the presence of the
others due to it’s higher volume of traffic data. Moreover, there is no Protocol
Analyser Module. In other terms, all view update capsules read are queued by a
reader thread and it’s counterpart, the broadcaster thread, pops the queue and
publish the information to every Participant in the shorter list of references.

3.2 Participant

The Participant is the generic term for a collaborative application that can be
human driven or/and automated. A Participant can be required to play the addi-
tional role of a Coordinator (primary or backup) simultaneously. Obviously that
second role is a totally independent role to that of the Participant. The scope of
a Participant is defined by the core plugin which is intricate to the Collabora-
tive Architecture and collaborative plugin. It’s interaction is as transparent as
interacting during a single user mode session.

The architecture of the Participant is built along the Model-View-Controller
(MVC) software design pattern. Fig. 7 illustrates the components making up a
Participant. As it can be noted, the controller is made up of two parts, the appli-
cation module and the communication module. The Controller always communi-
cates to the Coordinator the messages caught from the View. If the Coordinator
approves of it, then the Controller informs the Model of the change in state and
it in turn informs the View which takes appropriate visual update actions.

Each Participant is connected to the Coordinators through two main lines of
communication. One is used for data exchange concerning the shared object and
the other line is used for administrative purposes. It must be noted that admin-
istrative operations are transparent to the Participants as there is no interaction
with the collaborative application itself. The Data line can be made up of one
or two streams depending on whether the Participant is connected to the View
Update Service.

The Participant starts by requesting a connection to a well-known internet
address and port where the primary Coordinator of a session is hosted and
listening on respectively. As soon as the socket connection is established, the
participant transmits the following pieces of information:

– A Username/Password pair that will be used to authenticate the Participant
and serve as an ID to inform other Participants of it’s presence.

– A signature of the collaborative application, so that a match can be made by
the primary Coordinator overseeing the session that this Participant wishes
to join. The motivation is that the Coordinator is part and parcel of the
Collaborative Architecture and hence is the same for all applications. The
distinction between the collaborative applications is made by the difference
in the library of plugins that they use. Hence it is deemed important to
transmit the ID of the application to the Coordinator so that the Participant
can be informed already at the start of a mismatch in the session it wants
to connect to.

An architecture for building collaborative tools in Java 183

APPLICATION

MODULE

MODULE

COMMUNICATION

View

Model

Controller

INTERNET

Admin Service

Data Service

View Update Service

Fig. 7. Software design of the Participant.

– A request to connect to the View Update Service mentioned above. At this
stage, a Participant is bombarded with all graphical updates allowed by the
applications and generated by all participants. The only allowed graphical
action that is distributed is when a graphical token is dragged on the screen.
It was deemed sufficient to demonstrate the presence of a Participant and it’s
current region of interest. The request is made in terms of a remote method
invocation approach. This allows flexibility.

As mentioned above, the Coordinator responds with appropriate data if the
authentication has proved successful. The capsule sent by the Main Service in the
Coordinator is buffered in a queue in case too much comes into the participant
while it is still processing one capsule. Anyhow, the Capsule Interpreter Thread
in the Participant pops the queue of capsules and sends it for processing to
the attached Protocol Analyser Module. There the appropriate objects in the
Application Module are called and the View or the Model is passed on with the
relevant information. Fig. 8 illustrates the components of the Communication
Module of the Controller and the flow of information through it.

The Application Module is made up of two sets of plugins. The first set is the
default used for administrative purposes. For example, calculating the amount
of free memory space available to collaborative application or for connecting to
backup Coordinator. The other set concerns the application itself. The main con-
cern when designing the plugin is to make those operations that alter the state
of the shared data transactional. This can be achieved by defining a transaction

184 YC Nuckchady and J Nummenmaa

Application Module

Connection Objects

Capsule Interpreter Thread

Data Service

Admin Service

View Update Service

Operations Analyser Module

Capsule Reader Thread

Buffered Queue of Capsules

Fig. 8. Components and operations performed by the Communication Module.

An architecture for building collaborative tools in Java 185

as a series of commands that generates exceptions. The Protocol Analyser is de-
signed such that if a Command Object is executed and one of the method calls
throws an exception, then the execution of the Command Object is interrupted
and the Protocol Analyser informs only the Participant who initiated the trans-
action of the failure. However if the transaction succeeds at the Coordinator’s
site, then the Protocol Analyser distribute this transaction to all Participants.

3.3 Capsule, Command Object and the Protocol Analyser Module

A Capsule contains a Command Object and propagation field which indicates if
that Command Object is to be distributed to everyone or intended to the receiver
of that Capsule. The Command Object is a set of method calls to one or many
objects. It is represented by delimited strings and it’s structure is described
below,

Table 1. The syntactic structure of a Command Object.

<Data Object>:= <Command String>
<Command String>:= <Fragment>|<Fragment>C S

<Fragment>:= <Command Name>M S<Method Name>|
<Command Name>M S<Method Name>A S<Argument>

<Command Name>:= A valid class name according to Java’s Language Specification

<Method Name>:= A valid method name according to Java’s Language Specification

<Argument>:= Simple Data Types according to Java’s Language Specification |
<Argument>A S

C S := Command Separator

M S := Method Separator

A S := Argument Separator

The Protocol Analyser Module takes as input an Command Object and de-
composes it into Fragment of commands. It then feeds each of them to an ex-
ecution engine made up of objects from the java.lang.reflect package. All
arguments to a method call are passed as java.lang.String data types. The
invoked method has to make the appropriate data type conversion so that the
argument can be used as intended. Thus, it is the responsibility of the plu-
gin designer ensure that these constraints are implemented. Also as indicated
above, methods that form part of a transaction should be described to throw
an fi.uta.ctk.protocol.CommandException. This exception is used to break
the loop of fragment execution in the Protocol Analyser. Furthermore, the latter
maintains a dynamic list of Objects that have already been created. At this stage
the objects that are invoked typically contains accessor methods to the shared
data. When a request to one of these methods is made, the execution engines
checks in it’s list for an existing reference. If there is one, it is used, otherwise a
new instance is created and a reference to it is added to the list of active objects.

186 YC Nuckchady and J Nummenmaa

This strategy eliminates the repetitive creation of the same objects each time an
invokation is made.

4 A case study and Results

This Collaborative Architecture was used to implement a collaborative version
of Fujaba in the context of an editor for UML class diagrams. Fujaba is by nature
a single user application and hence already has the infrastructure for the storage
of data. This fulfills the requirement of having data replicated at all participating
sites according to Fig. 1.

The first step in enhancing the Fujaba application to the level of a collabo-
rative tool was to identify those operations that affected the state of the shared
UML diagram and those that could be used to indicate the presence of a Par-
ticipant to it’s peers. In this case it was decided to have two such operations,
one whereby if an object is locked for update by a participant, then that object
appears of a different colour than the others. The other graphical operation is to
display to all Participants and at all times the movement of classes when they
are dragged on the screen. For both these operations, the ID of the responsible
Participant is made visible when the mouse is posititioned over these graphical
objects.

Table 2 gives an example of an operation that is part of a transaction. As it
can be noted, the method setBalance(float) throws an exception as it alters
the state of a piece of data. Also note that the method getBalance(String),
takes a string parameter. This argument is sent in the Fragment that is currently
being processed so that getBalance knows to which object it must send back
this result. The callingMethod is of the form of a fragment and balance is
appended to it.

The enhanced version of the Fujaba case tool behaved smoothly in a collab-
orative session of 5 participants at a network distance of 3ms from the Coor-
dinator. However to determine the stress level of this architecture, a barebone
version of the environment was used with an automated chatting program. The
choice of this type of application made it very easy to tune the rate of flow of
information between Participants and Coordinator. The experiment aimed to
determine a balance between the number of users and the rate of flow of mes-
sages between the parties. Indeed, in a session like the one above, there are two
types of updates, distributed graphical updates and distributed data updates.
Typically, the former generate more messages than the latter. The experiment
was made up of two sets of four sessions. In each set, the rate of flow of messages
was kept constant and the number participants varied for the each of the ses-
sions. The number of participants were carefully chosen so that a wide spectrum
of readings could be obtained. The first set of measurements was tested under
a rate flow of 20 messages per second and the second one was tested at a rate
of 2 messages per second. These rates are the estimated upper limits of number
of generated messages for the two types of activity identified above. In other
terms this means that for example in the case of data update, a human user

An architecture for building collaborative tools in Java 187

Table 2. An example of a command object written for a plugin.

1 package fi.uta.ctk.protocol.command;

2 import fi.uta.ctk.protocol.CommandObject;

3 import fi.uta.ctk.protocol.ProtocolException;

4

5 public class Balance

6 {

7 private float Balance;

8

9 public String getBalance(String callingMethod)

10 {

11 return callingMethod+CommandObject.ARGUMENT_SEPERATOR

+Balance;

12 }

13

14 public void setBalance(String amount) throws

ProtocolException

15 {

16 try

17 {

18 float value = Float.parseFloat(amount);

19 if(value < 0)

20 throw new ProtocolException("Balance cannot be less

than 0");

21 this.balance = value;

22 }

23 catch(NumberFormatException nfe)

24 {

25 throw new ProtocolException("Invalid Balance Format");

26 }

27 }

28 }

188 YC Nuckchady and J Nummenmaa

can at maximum generate 2 transactional upates per second. The experiment
was repeated over a number of days and at different times of the day. In this
experiment, we monitor the growth of the size of the queue of capsules (buffer)
at the Data Service over a period of four minutes.

0 50 100 150 200 250
0

2

4

6

8

Time (s)

10
3
of

 It
em

s
in

 B
uf

fe
r

Size of Buffer over Time

14 Users

13 Users

12 Users
11 Users

Fig. 9. The rate of flow of messages is
20 per second and is maintained over
240 seconds. Each plot indicates the
growth of the queue size for that num-
ber of Participants involved.

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

Time (s)

10
3
of

 It
em

s
in

 B
uf

fe
r

Size of Buffer over Time

32 Users

31 Users

30 Users

29 Users

Fig. 10. The rate of flow of messages is
2 per second and is maintained over 240
seconds. Each plot indicates the growth
of the queue size for that number of
Participants involved.

Fig. 9 clearly demonstrates that for each session, past a critical value the
time required for the buffer to empty grows exponentially with time. This effect
is also present in Fig. 10 but the time required is not as large as in the case of
the view update data. This is because the queue size is not as large. In both
cases, these types of sessions is not recommended as it’s quality would degrade
very quickly to the extent that it may take about 30 seconds for the view update
service and 80 in the case of data update. Moreover, under normal operational
circumstances it has been estimated that a session of 30 participants can be
easily handled.

5 Conclusion and Future Work

In this paper, we proposed an architecture for developing collaborative applica-
tions. A centralized topology of interconnection is favoured and it is improved by

An architecture for building collaborative tools in Java 189

a backup PoC. This type of arrangement makes it easier to synchronize Partici-
pants with respect to each other. We also saw that a Coordinator serves as the
PoC and it is made up of a number of four services, the Main Service, the Data
Service, the Admin Service and the Visual Update Service. The Participant is
designed according to the MVC software pattern. The Controller part is made
up of two parts, the Communication Module and the Application Module. The
latter consists of the application itself and two sets of plugins, the core plugin
intricate to the architecture and the application plugins. The objects in the lat-
ter set are essentially objects that update the shared data and what can be used
to indicate the presence of a collaborator to it’s peers. The data update objects
are first executed at the Coordinator’s site and only if it is successful that it
is broadcasted to all the Participants. Otherwise the exception is caught and
signalled only to the responsible Participant.

One feature that can be considered for the future is a strategy to select the
regions of interests for the View Update Service and also the type of graphical
updates that one is willing to subscribe to. This will then prevent any collabo-
rator from being bombarded with irrelevant graphical update information.

6 Acknowledgements

This work has been carried out in the UML++ project funded by the Academy
of Finland.

References

1. Jari A. Lehto, Pentti Marttiin, Nokia Research Center: Lessons Learnt in the Use
of a Collaborative Design Environment. 33rd Hawaii International Conference on
System Sciences-Volume 8

2. Doug Lea: Concurrent Programming in Jaba(TM): Design Principles and Pat-
tern(2nd Edition)

3. Jim Farley: Java Distributed Computing
4. Andrew S. Tanenbaum and Maarten van Steen: Distributed Systems: Principles and

Paradigms
5. Randy Chow and Theodore Johnson: Distributed Operating Systems and Algo-

rithms
6. Sun Microsystems Inc.: Java Shared Data Toolkit.

http://java.sun.com/products/java-media/jsdt/
7. Sun Microsystems Inc.: Java Remote Method Invocation.

http://java.sun.com/docs/books/tutorial/rmi/
8. University of Paderborn, Software Engineering Group: The Fujaba Project.

http://www.uni-paderborn.de/cs/fujaba/

