Synthesis of distributed programs

Vahur Kotkas

Institute of Cybernetics at TTU
vahur(@cs.ioc.ee

Abstract. This paper presents a way for distributed program synthesis. We use
Java programming language as a base language that is enchanted with
declarative specifications. Program synthesizer that performs automated
program construction uses these specifications. Several aspects are presented on
how in this framework a new program can be synthesized and executed, taking
advantage of the distributed computing.

Introduction

Distributed processing is used to speed up computational processes already for
decades. Still, these capabilities are used only by a limited number of programmers.
There are two main reasons why distributed processing is not widely used are:

1. Availability of the High-Performance Computing (HPC) facilities (super-
computers) is limited because of monetary or political reasons.

2. Writing a program to be executed in a distributed manner is far more complex
than doing it for sequential case.

The first reason is quickly fading, as it is possible today to build a computer cluster
with quite affordable price and take advantage of HPC and GRID computing.

It is more crucial with software development — there are still no widely accepted
solutions allowing one to develop software for distributed computing. Still there
exists strong demand for an easy to use software development environment.

In this paper we concern mainly issues related to modeling and simulation
environments. Scientists and engineers use modeling and simulation often in their
research. Generally, these activities are computationally difficult. It cannot be
expected that people who need simulations in their work are also computer specialists
capable to develop low level complex programs that take advantage of HPC.

[Kotkas02] describes an architecture of a program synthesizer, where the main
keywords to highlight the problem domain were
—high level specifications
—fully automatic program construction
—program reusability.

These features are addressed to researchers and engineers who are not computer
scientists or skilled programmers and need an easy to use tool for modeling and
simulation.

22 Vahur Kotkas

The program synthesizer allows one to specify their problems with high-level
declarative specifications and let the synthesizer create automatically a program to
solve their problem.

Basically, one has to describe the parts of modeled system (modules or objects), tie
them together into a full model, give the necessary input parameters and ask the
system to synthesize a program that calculates the values of resulting parameters. This
approach gives a significant flexibility as the previously developed models can be
very easily reused.

The solving task is commonly computationally difficult and need a lot of
computing power; hence there is a need towards distribution of the synthesized
programs in order to carry out the computations in a shortened time scale.

In this paper we describe the possibilities to take advantage of HPC in the given
framework. The base language for the framework is Java, which is extended with
declarative specifications and used as an input to the program synthesizer that is the
main part of the framework.

In the next chapter we describe the high level specification language embedded
into Java programming language, then describe how the program synthesis is carried
out and finally look at the possibilities for the distributed program execution.

Declarative Specifications

Declarative Specifications are embedded into a Java class as an array of Strings.
Each eclement of the array represents one clause of the specification. These
specifications can be accesses easily with Java reflective tools whenever an object or
class is accessible. Every class that should be incorporated in the program synthesis
should have the declarative specification. We call such specification a meta-interface
of the class as it describes the interface variables and their interrelations that can be
used in the synthesized program.

The specification language consists of two sections -- var and rel section. The var
section specifies the components of current class - Java primitives and objects - used
in the rel section. Multiple instances of these sections can be used in a specification in
random sequence.

The var section is an obligatory section in the meta-interface. It is formally
specified as follows

var a_1, a_2, ..., an: type

where a_i (i = 1..n) are declared variables. If type is represented with the keyword
any, the declared component already exists in the Java class and the exact type of that
component is applied during the compilation of the specification. Otherwise, if the
names of Java primitive types or classes are used, new components are added to the
synthesized program.

The rel section defines relations of the declared components in the form of
computability statements or computational constraints. In simpler words, rel
statements show how some components can be calculated out of other components.
The statements are written as follows:

rel Label: Rel Statenent

Synthesis of Distributed Programs 23

The RelStatement specifies an equivalence, equation, inequality or method
declarations. The Label is a given name to the current specification statement that can
be referred for debugging or is used to modify inherited specifications.

As Java classes inherit properties from their superclasses, also the specifications of
meta-interfaces are inherited. Meta-interface in a subclass overrides the specification
statements of the superclass, if it defines a new relation with the same label.

Method declaration presents either a class method or an instance method. It
describes the input and output parameters required for the method invocation and
exceptions if needed. In other words, the method declarations show how the methods
and components of the current class are interrelated. A general Method declaration
construction is the following:

[Subt askSpec] [| nput Spec] -> Qut put Spec { Met hodNane }

Here the square brackets denote that the SubtaskSpec and InputSpec are optional.

SubtaskSpec defines a comma-delimited list of Subtasks. Each Subtask is
surrounded with square brackets and denote a computational problem of type x -> vy,
which solvability is treated as input for the method, where x and y are lists of
components of class ClassName. The Subtask declaration construction is the
following:

[d assNane | -] [Input Spec] -> Qut put Spec

In case of Subtask is present in the Method declaration the synthesizer creates a
new program that solves the computational problem on a separate object of the given
class ClassName where x and y are lists of components of this class.

In case the ClassName is omitted the current context object (object in which the
declaration is present) is used where x and y are components of the object.

The synthesized program can be called from within the method body in the
following way:

SSP. subt ask(1, input, output);

Here the SSP.subtask is a method from the SSP class that automatically finds the
corresponding synthesized program matching to the first subtask (see parameter 1 in
the method call) of the current Method. If there are more than one subtask
specifications in the Method declaration they can be accessed using their number of
order in the SSP.subtask call. The input and output are structures of input and output
parameters for the synthesized program that were defined in the Method declaration
SubtaskSpec section. Class SSP is a collection of methods that can be called from
within the Java program. The name is given referring to Structural Synthesis of
Programs paradigm on top of which the programs synthesizer operation lies.

The InputSpec consists of two lists of components separated by &-symbol.
Commas separate the components described on both lists. The components of the list
before & are handled as method's formal parameters and the components after &
respectively define instance variables that the method uses. If the list after the symbol
& is empty, &-symbol must be discarded.

The OutputSpec has a similar structure to the /nputSpec. The only difference is that
before the &-symbol only one component is allowed, because an arbitrary method in
Java may return only one value in time. In case there is no element specified before
&, the method is of type void.

24 Vahur Kotkas

Additionally, the output parameter list may end with a | separated list of
components that defines a set of exceptions, which could be thrown by the method.

For example

rel [compd ass|-k,I->m a, d.y &c.x, d.x ->c.y &d.y | e {dolt}

illustrates the usage of constructions, where InputSpec = a, dy & c.x, dx and
OutputSpec = c.y & d.y | e. Component a and d.y are formal parameters for local
method dolt with signature type(c.y) dolt(type(a), type(d.y)), and c.y is the output of
that particular method. Global components c.x and d.x are used in the computations
and d.y is modified as a side-effect of this method. The component e represents an
exception that may be thrown by the method. This method is applicable only in the
case a computational problem £,/-> m is solvable on class compClass or in the other
words m is computable out of given k, / and the default initializations made when an
object of class compClass is created.

Equivalence defines a pair of components that should stay equal at any stage of an
executed synthesized program. One can think of equvalent components as of objects
that are stored into the same memory location. Equivalences are used as connectors
between components enabling to build larger systems from smalles components. An
example of an equivalence definition may be the following: rel a.x == b.y. One
component may be present in many equivalence definitions. This forms a group of
components that should stay equal during the execution.

Equations and inequations in the RelStatement are useful when one solves an
engineering or modeling task. Java programming language does not include any
solver that handles equations automatically and the solver for the equations has to be
coded imperatively by the software developer. By allowing these kinds of definitions,
we can support constraint enriched Java classes and significantly reduce the
programming time. However, we need an external solver that handles such kind of
computations.

An example of specification language usage

Let us illustrate the usage of the specification language with an example of a
simple modeling system Syst4, which uses 2 subcomponents: Model4 and ModelB
that implement 2 algorithms. Unfortunately these models are built to use different
measurement systems — the Modeld uses feet’s and miles while the ModelB uses
metric measurement units. In practice algorithms that are developed based on a
number of measurements are quite often given in measurement units commonly used.
Problems appear when we need to combine several of such models and they may not
been prepared to be used with the same measurement system.

In order to solve the modeling task we have to execute the computations in ModelA
and ModelB sequentially so that some of the output parameters of Model4 would be
input parameters for ModelB. As these models are using different measurement units,
we have to translate the measurement units in between.

Synthesis of Distributed Programs 25

Typically the algorithms (created by engineers) given in the form of program code
would look the following :

public class Mdel A {
/1

public double inil,

inl and in2 given in NM,

in2, outl, out?2;

publi c doubl e conputeCQut1(doubl e inputl,
/* inmplenentation follow here */

}

publ i c doubl e conputeQut2(doubl e inputl,
/* inmplenentation follows here */

outl and out2 given in feet

doubl e i nput?2) {

doubl e input?2) {

}
}
public class Mdel B {
/1 inl and in2 given in km out given in cm
public double inl, in2, out;
publ i c doubl e conputeQutl(doubl e inputl, double input2) {
/* inmplenentation follow here */
}
}

Fig. 1. Initial source of the ModelA and ModelB implementing some algorithms

We have to add a meta-interface (SSPspec) to the class in order to take advantage
of the automated synthesis of programs and highlight the measurement units in use
i mport ee.ioc.cs.synthesizer.*

public class Mdel A i npl enents SSPInterface {
public static String[] SSPspec = {

“var inl nm, in2_ mi, outl ft, out2 ft doubl e*
“var inl, in2, outl, out2 : any"“

“rel inl_nm ->inl {narrow"

“rel in2_nm ->in2 {narrow} *

“rel outl -> outl ft {narrow “

“rel out2 -> out2_ft {narrow “

“rel Ql: inl, in2 -> outl {ConputeCuti1} *“

“rel @: inl, outl -> out2 {ConputeCut2} “

}

/* The rest of the class follows here */}

Fig. 2. Declarative specification of ModelA

26 Vahur Kotkas

Here the relations O/ and O2 show what parameters are actual inputs and outputs
to the methods ComputeOutl and ComputeOut2 that is not as clearly visible in the
initial class text. The keyword narrow stands for type casting that is in our case

double -> double and need not any special treatment (like catching possible
exceptions).

In the similar way we create the meta-interface to the ModelB.

The class SystA is presented on Fig 3. The purpose of method run() is to get values
for variables in/ and in2 and calculate the value of out/ and present it.

i mport ee.ioc.cs.synthesizer.*
public class SystA inplements SSPInterface {
public static String[] SSPspec = {
“var inl, in2, outl : any"“

“rel [Model A |- inl _nm, in2_nm ->outl ft, out2_ft],
[Translator |- ft -> kni,
[Model B |- inl_km in2_km-> out_cm

inl, in2 -> outl {nethodX} *
}
public double inl, in2, outl;
publ i c doubl e met hodX(doubl e parl, double par2) {
/* Here we formthe structures of input and out put
paraneters for the subtasks and store the values of parl and
par2 to input 1. */
SSP. subt ask(1, inputl, outputl);
SSP. subt ask(2, outputl, output?2);
SSP. subt ask(3, output?2, output3);
Ret ur n out put 3;
}
public void run() {
inl get Val ue();
in2 = getVal ue();

String progl D = SSP.synthesize (“inl,in2->outl“, this);
SSP. execut e(progl D, this);
present Val ue(out 1) ;

}
Fig. 3. Class SystA

Synthesis of Distributed Programs 27

The second subtask refers to class Translator that could be the following:
i nport ee.ioc.cs.synthesizer.*

public class Translator inplements SSPInterface {
public static String[] SSPspec = {
“var m km cm mm dm: doubl e"
“var ft, kft, inch, nm : double”
“rel km = m 1000“
“rel km= nm *1. 852"

}

Now when the method run of class Systd calls SSP.synthesize() the program
synthesizer is executed and searches for a sequence of applicable methods that solve
the given task. Note that in/, in2 and outl, used in the program synthesis request, are
the components of the class Syst4. The usage of SSP.synthesize() method call is
discussed in more detail in chapter “Distributed Program Execution™.

Distributed Program Synthesis

The Synthesizer (see Fig. 4) handles the specifications and performs program
construction. The Synthesizer is composed of the following 6 components: Manager,
Compiler, Decorator, Knowledge Base & Component Repository (KBCR), Planner
and Code Generator.

All components of the Synthesizer are running under Object Management Group's
Common Object Request Broker Architecture (OMG CORBA), which provides a
flexible communication and activation for distributed heterogeneous object-oriented
computing environments [Vinoski97].

While using CORBA for component interconnection we have to serialize (translate
into a byte stream) all the data we want to send over the network, as CORBA is inter
platform and inter programming language communication architecture and entities
cannot be sent over a network.

Manager is the central component of the Synthesizer that coordinates the work of
other components and manages the computational resources. When receiving a
request for program synthesis from a Program the Manager first checks whether the
Program has issued a similar synthesis request before. In this case there is no need to
perform synthesis again and the suitable (solver) program can be fetched from the
KBCR.

KBCR is a database-like structure that allows to store compiled declarative
specifications for each class used in the Program as well as generated solutions for
different problems. This enables the reuse of already synthesized programs.

28 Vahur Kotkas

Synthesizer

—> Compiler

Decorator

Knowledge
Base &
Component
Repository

Planner

Cotesc D

Messages passed over CORBA:

Code Generator 4_—; Callto an existing object

Invocation of a new obj ect

Manager

Fig. 4. The automated program synthesis environment

In the case the Program contacts with the Synthesizer first time it "introduces"
itself by delivering its classes in addition to the synthesis request. These classes are
forwarded to the Compiler.

The Compiler first fetches the declarative specifications out of the classes and
calculates a hash number based on the each specification. Then it compares the results
to the hash numbers stored in the KBCR. If the hash numbers match the compilation
of these classes can be skipped, otherwise the Comipiler parses the declarative
specifications of those classes, which hash code did not match the ones in KBCR, and
stores the resulting description into KBCR.

The Decorator creates a bipartite graph like structure out of the class descriptions
stored in the KBCR. The bipartite graph has two types of nodes - components and
relations. The reason of building such a structure is to get rid of the object-oriented
hierarchy, thus making it more suitable for the search.

Then the Decorator paints the object and variable nodes in the graph. A painted
node in the graph represents to a component with the state "known". A different
"color" is used to mark the goal(s). Evaluated or "known" is the state of a component
when we consider that it has a value i.e. it is not nu// in case of Java.

This structure is the search space delivered to the Planner. The main function of
the Planner is to find a solution for the problem specified by a user. Before starting
with problem solving the Planner checks from the KBCR whether a solution already
exists for it. In the case the solution does not exist, the Planner starts solving it.

If the solution is found, the algorithm is passed to the Code Generator, the problem
specification in the KBCR is marked as solvable and the caller Program is noticed
about it.

Code generation is a straightforward process, where the algorithm is translated into
the class of the appropriate programming language i.¢. to a Java class when the source

Synthesis of Distributed Programs 29

language was Java. The class is compiled and a component including a newly created
instance of this class is summoned and added to the KBCR. The component is stored
into the KBCR with its problem specification that makes it possible to use that
component repeatedly for solving many similar tasks.

Planning Strategies

In principle there are two kinds of relations that may occur in the declarative
specification [Tyugu81]:

1. Unconditional relations implementing unconditional computability statements of
Structural Synthesis of Programs (SSP). In such relations computability of some
(output) object depends only on some other (input) object(s). Unconditional relations
of several types as equations, equivalencies, Java methods (without subtasks) etc. are
available in the specification language.

2. Conditional relations or relations with subtasks, implementing conditional
computability statements of SSP, describe more sophisticated dependencies where
output objects depend not only on input objects but also on solvability of some other
computing problems.

The problem specification for Planner is of form x->y, where x denotes the set of
"known" objects and y denotes the set of objects to be computed (the goal). While
synthesizing programs for sequential execution in a non-distributed environment the
Planner creates an algorithm (a sequence of relations) that describes how to compute
y from x using the following proof search strategy of Structural Synthesis of
Programs [Harf80]:

—An assumption-driven forward search (linear planning) selects unconditional
relations. At each step, if all the input objects of the relation are "known" and at
least one output object is "not known", the relation is added to the algorithm. When
adding a relation into the algorithm all its output objects are set as "known"
objects. The search is completed when all the nodes marked as "goal" is also
"known" or there are no nodes with "known" inputs left. The search is a simple
flow analysis on the network of unconditional relations.

—QGoal-driven backward search selects and solves subtasks. The search is applied if
the linear planning cannot be continued. Only such relations with subtasks are
considered which input objects are "known". First the KBCR is checked for the
existence of the solution of every subtask the relation have. If existing solutions are
not found, the Planner is recursively used for solving every subtask of the relation
considered. If all the subtasks of the relation are solved, the relation is added to the
algorithm. Linear planning is used after every invocation of a relation with
subtasks in the algorithm.

—Minimization is applied to the resulting algorithm of the two previous search
strategies. The search strategies above do not guarantee that we have built the
shortest possible algorithm for computing the desired goal. Even more, the
synthesized algorithm may contain relations that are not necessary for computing
the goal. Minimization is used to exclude such relations from synthesized
algorithm. As a result of planning we get an algorithm that is not necessarily the
shortest, but it does not contain unnecessary relations.

30 Vahur Kotkas

Well-known search-strategies like depth-first or width-first can be applied here as
well as some more-advanced strategies using for example a heuristic criterion. For
larger problems the choice of right search-strategy is critical, as one may need to go
through the whole search space in a case of wrong strategy choice.

Hence, in the presence of satisfactory amount of distributed computing power, we
propose the following changes to the planning strategies.

1. A number of Planners is executed in parallel that use different search strategies.
Manager handles the execution of Planners and collects the results (see Fig. 5).

2. In addition to the Planners, the Manager spawns a SubtaskSolver (see Fig. 5)
that finds from the given search space (composed by the Decorator) all independent
subtasks (subtasks to be executed on a separate object) and requests their solving from
the Manager.

3. Whenever some of the independent subtasks are found to be solvable, their
solvability is marked in the KBCR, the algorithm is passed to the Code Generator and
the Planners are informed about it. The work of the Planners is limited to the given
search space. It is inefficient to let them check the solvability of independent subtasks
from the KBCR.

;; Planners —‘

Manager T

, f \ Planner

Subtask Solver

Planner

Knowledge
Base &

Component
Repository

Fig. 5. Distributed planning

4. The independent subtasks are considered "similar" to the ordinary inputs of a
method i.e. whenever the independent subtasks are marked solvable and the input
variables are "known" the method can be applied included into the algorithm. Hence
the methods without and with only independent subtasks can be applied in the phase
of linear planning.

5. The dependent subtasks (subtasks to be executed on the context object) are
considered only after there are no more independent subtasks to solve and no more
relations can be applied by linear planning.

6. The planning is considered finished whenever first of the Planners has finished.
The other Planners are then terminated.

In order to solve an independent subtask the SubtaskSolver has to create a new
instance (object) of the class ClassName and then make similarly to the Program a
synthesis request to the Synthesizer. This is necessary because the constructor of the

Synthesis of Distributed Programs 31

ClassName may evaluate some of the components that may appear important for
solvability.

Distributed Program Execution

Depending on the source data the synthesized program can be executed locally,
partially remotely or remotely. In the current framework we consider remote
execution usable only on a distributed platform. The local execution is needed in the
case our source data cannot be serialized and there are no independent parts of the
program that can be executed remotely.

There are three possible cases where distributed execution of the synthesized
program can be applied:

1. Execution of the subtasks
2. Solving equation and inequation systems
3. Parallel execution of the main synthesized program

We aim to make the environment as user-friendly as possible and try to hide all the
distribution related tasks into the system. However, in case of subtask execution, user
still has to decide how the execution is performed.

In engineering computation and especially in case of modeling and simulation one
needs quite often to perform similar computations on an array of data. It may be a
number of measurement results, different parameters of given model or a number of
case inputs for an optimization task.

In those cases such computations can be declared as subtasks. The benefit of the
subtasks is that we do not need to implement needed programs beforehand and let the
synthesizer to do it. In the program we have to just pass proper data to the synthesizer
program and get our computations done.

However, passing the data to the subtask program is somewhat complicated. As we
need to make a call to an existing Java method, which then forwards the input data to
the real program, the subtask call is generalized to the form:

SSP. subt ask(specNo, | nputPars, CQutputPars);

Here the InputPars and OutputPars are structures that must be composed before
the call for subtask execution. In case we want parallel execution of the same subtask
on multiple data the subtask call is slightly different:

SSP. subt asks(specNo, InputPars[], QutputPars[]);

In other words we need to send an array of input parameters and receive an array of
results. Hence the two following Java program fragments yield to the same results:
for (int i=0;i<inputs.length();i++) {
input = inputsf[i];
SSP. subt ask(1, input, output);
outputs[i] = output;
}
SSP. subt asks(1, inputs, outputs);

32 Vahur Kotkas

The only difference of these program fragments is that the first one is executed in
sequential order but the second one may be executed in parallel. One of the following
criteria has to be fulfilled to enable parallel execution of subtasks:

1. The subtask is independent (can be executed on a separate object)
2. The subtask is dependent (must be executed on the context object) and the context
object is serializable.

These criteria are detected automatically and if the current situation does not match
to any of these criteria, sequential execution is used.

Considering our example about Syst4 we can think of a modeling case where we
need to calculate a number of outl’s based on a number inl’s and in2’s. In this case
the methods methodX and run should be only slightly changed:

public double[] inl, in2, outl;

publ i c doubl e[] mnethodX(doubl e[] parl, double[] par2) {

/* Here we formthe structures of input and out put
paraneters for the subtasks and store the values of parl and
par2 to input 1. */

SSP. subt asks(1, inputl, outputl);
SSP. subt asks(2, outputl, output?2);
SSP. subt asks(3, output?2, output3);
Ret ur n out put 3;

}
public void run() {
inls = getVal ues();
i n2s = getVal ues();
String progl D = SSP.synthesize (“inls,in2s->out1s",
this);
SSP. execut e(progl D, this);
present Val ues(out 1s) ;

}

Selection of proper solver for a given equation or inequation system may be crucial
task. We should consider the speed and accuracy of the solvers as well as their
capabilities. In the current framework the selection of solvers can be automated.

The easiest way to solve task is to select a number of solvers and execute them in
parallel. When one of the solvers has finished its result is used and the others are just
terminated.

More complex ways of solver usage can be introduced. The results of different
solvers can be collected and most common solution selected or partially sequential
execution of solvers can be used when none can handle the problem alone
[Monfroy03][Petrov02][CaseauO1].

It is the task of Planner to find appropriate parts of the synthesized program that
can be executed in parallel. Search for these parts is made during the minimization
stage. However, in practical tasks one should not expect significant speedup from
distribution of the main synthesized program, as it is impossible to predict the

Synthesis of Distributed Programs 33

execution times of given relations unless some additional information is available.
This kind of information can be learned while solving similar tasks and executing
similar programs many times.

Summary

This paper discusses the possibilities to take advantage from distributed execution
of program synthesizer and synthesized program parallel execution. We describe
declarative specifications embedded to Java programming language to support
automated program construction, the program synthesizer that performs automated
program construction uses these specifications and several aspects how in this
framework a new program can be synthesized and executed in a distributed manner.

Changes to the planning algorithm are proposed to take advantage of the
distributed execution of the synthesizer and speedup the program construction
process.

As the input data and synthesized programs can be transferred to the location
providing satisfactory computational resources we believe that this approach could be
useful for GRID computations.

References

[Kotkas02] Kotkas, V.. A distributed program synthesizer. Acta Cybernetica 15 (2002), pp
567-581

[Vinoski97] Vinoski, CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments. IEEE Communications Magazine, vol. 14 (1997).

[Tyugu81] Tyugu, E.: The structural synthesis of programs. Lecture Notes in Computer
Sciences, Vol. 122, 1981, pp. 290-303.

[Hart80] Hart, M., Tyugu, E.: Algorithms of structured synthesis of programs. Programming
and Computer Software, 6, (1980), pp 165-175.

[Monfroy03] Monfroy, E., Castro, C.: Basic Components for Constraint Solver Cooperations.
In Proceedings of the 18th ACM Symposium on Applied Computing (SAC2003), ACM
Press (2003).

[Petrov02] Petrov, E. Monfroy, E.: Automatic analysis of composite solvers. In Proceeding of
the 14th Int. Conf. On Tools with Artificial Intelligence (ICTAI), IEEE Computer Society
(2002).

[Caseau01] Caseau, Y., Silverstein, G., Laburthe, F.. Learning hybrid algorithms for vehicle
routing problems. TPLP 1 (2001) pp 779-806.

