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Abstract. Software design is an iterative and collaborative process.
There is a need for techniques for composing and decomposing the con-
structed models, and for comparing them against each other to avoid in-
consistencies and to promote understanding of the system under design.
To address these issues, set operations for the Unified Modeling Language
(UML) are discussed. The operations are defined tool-independently us-
ing the UML metamodel and are being implemented as a part of a larger
framework for manipulating UML models. The operations are put in con-
text with other similar techniques, including composition relationships
of Subject-Oriented Design.

1 Introduction

The Unified Modeling Language (UML) [11] has established itself as an industry
standard for describing and designing software systems. UML offers different
diagram types to view a system from different perspectives, on different levels
of abstraction, and at different stages of software development process. While
in principle a system design could be described as a monolithic model, this
is very rarely the case in practice. Typically, system design is a collaborative
effort, performed by several engineers or design teams, each focusing on different
viewpoints or concerns. Software engineering processes are often incremental and
iterative by nature (e.g. [7], [5]) and produce new models throughout the whole
design life cycle. In addition, there often exists a structural mismatch between
the specification paradigms across a software development life cycle, caused by a
scattering and tangling effect [3]. Scattering is caused by individual requirements
affecting several units of interest in a design model, while tangling is caused by
a single unit of interest catering for several different requirements.

While these problems are well recognized, there exists relatively modest tool
support addressing them. There is a need for mechanisms for exploiting the
dependencies between individual UML models. Such composition and decompo-
sition mechanisms should contribute to reduced complexity and improved com-
prehensibility of the system under design [17]. While only few UML CASE tools
offer model merging capabilities (e.g. Rational XDE [12]), to the knowledge of
the author, no tool provides support for performing operations for extracting
only the common parts of two models, or only the parts unique to one model.



Set Operations for the Unified Modeling Language 71

The mechanism proposed in this paper is UML set operations. A UML set
operation is a binary operation that, on the basis of two UML diagrams of a
particular type, produces a new UML diagram of the same type. Three UML set
operations are discussed: union, intersection, and difference. The operations can
be used as such, but their true power arises when accompanied with a suitable
set of model operations [9], and as a part of a larger framework for manipulating
UML models [1]. Because of the connectivity properties of the set operations,
they can be combined into more complex expressions (e.g. symmetric difference).

Model merging is supported by the union operation when used for merging
the modeling artifacts produced by several designers or design teams. Similarly,
the increments produced during a software development process can be inte-
grated into the existing system model. As an example of such a process, con-
sider a use case driven, incremental software process producing an initial base
structure model (as a class diagram) and for every use case, a set of sequence
diagrams. These sequence diagrams can be transformed into a class diagram [15]
and merged together with the existing system model using a union operation.
Model merging is also a prerequisite for constructing a framework supporting
chains of model manipulation operations. Set operations are a fundamental con-
cept when combining the results of e.g. transformation and projection operations
together [9].

Composing and decomposing a model is a key activity when supporting the
construction of the models from model fragments, each describing individual
concern or a cross-cutting aspect of the system. Such mechanisms are integral to
paradigms like Subject-Oriented Design that rely on support for the separation
of concerns [2] [17].

Model comprehension is supported when the designer is allowed to create
transient views for exploring the parts of the system she is interested in. De-
signers and stakeholders use different diagram types for exploring the system
from different viewpoints or levels of abstraction. Model comparing and slicing
can be used as a technique for extracting the parts of a model that contribute
to a given viewpoint or stakeholder interest. An example of such a procedure
is comparing different versions of a system to promote understanding of model
increments. Visual differencing can be used as a complementary technique for
gaining a better comprehension into the system at hand.

2 Specifying Set Operations

Of the nine different UML diagram types, set operations are defined for the
specification level diagrams focusing on the structure of the system under de-
sign: class diagram, component diagram, and deployment diagram. In addition,
the operations are applicable to specification-level use case diagrams. The re-
maining diagram types are discussed in Section 4. The origin and purpose of the
models define how they can be meaningfully interpreted: the quality of the input
operands determine the usefulness and quality of the resulting diagram.
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2.1 Definitions

The architecture of UML is based on a four-layer metamodel structure, which
consists of the following layers: user objects, models, a metamodel, and a meta-
metamodel. The meta-metamodel layer is the infrastructure for a metamodeling
architecture and it defines the language for specifying metamodels. The meta-
model layer is an instance of the meta-metamodel and defines the language for
specifying a model. The user model is an instance of the UML metamodel, con-
sisting of metaclass instances and links between them. The set operations are
defined using the standard UML metamodel.

We adopt the definitions for a model, a diagram, and a diagram type from
[16]. A model describes a UML metamodel instance, a diagram describes a graph-
ical representation of a model, and a diagram type describes a particular kind
of a diagram proposed by the UML Notation Guide. A model element refers
to a UML metaclass instance, while a property of a model element refers to a
meta-attribute instance belonging to the model element. The state of a model
element is defined by the property values.

The elements are divided into primary elements, secondary elements, and
relationships. Primary elements (e.g. class, interface) are composites that can
contain secondary elements that do not exist on their own (e.g. attributes, op-
erations). The division to primary and secondary elements is drawn along the
composition relationships in the UML metamodel. Relationships (e.g. depen-
dency, association) are instances of metaclasses that are derived from the UML
Relationship metaclass. The primary parent elements of a secondary element en

refer to the elements in chain e1, e2, . . . , en−1, en, where e1 is a primary ele-
ment, e2 . . . en secondary elements, and for each element ek+1 (0 < k < n), ek+1

belongs to ek.ownedElements.
The context of a secondary element is determined by the parent element

that the secondary element belongs to, and by its connecting mandatory meta-
association instances (i.e., meta-associations with a lower multiplicity bound
greater than zero). The context of a relationship is determined by its end model
elements. Reconciliation of model elements refers to the process of determining
the state for a model element representing a modeling concept described by
several corresponding model elements.

Figure 1 shows a subset of the UML metamodel for structure diagrams. The
metamodel shows the metaclasses, their meta-attributes and meta-associations,
and generalization relationships. According to Figure 1, Class is a primary ele-
ment, Attribute, Operation, Parameter, and AssociationEnd secondary elements,
and Generalization and Association relationships. The context of Generalization
is determined by its child and parent Classifiers, while the context of Attribute
is determined by its parent and type Classifiers. The examples in this paper are
presented as instances of the metamodel in Figure 1.

A set operation is defined with a signature D × D −→ D , where D is a
UML diagram of a given type. The operations are divided into three phases: (1)
establish a correspondence relationship between the model elements of the input
diagrams, (2) perform reconciliation on the corresponding model elements, and
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Fig. 1. Subset of a UML metamodel for structure diagrams (Foundation::Core)

(3) perform the actual set operation. Because of the connectivity properties of
the set operations, they can be combined into more complex expressions.

2.2 Correspondence Relationship

Given a set operation Op(A,B) with input operands as UML diagrams, a corre-
spondence relationship needs to be established between their model elements. If
two model elements correspond, they represent the same semantic design concept
and are considered as the same element when performing the a set operation (e.g.
union, intersection, difference). The correspondence relationship can be a many-
to-many relationship, showing candidate elements that could correspond. In the
following definition, we resort to the two most important modeling concepts in
UML: a metaclass and a name.

Definition 1. Given models A and B, model elements a belonging to A and b
belonging to B are said to correspond if they have the same metaclass, the same
name, and a corresponding context.

Definition 2. Given models A and B, model elements a belonging to A and b
belonging to B are said to uniquely correspond if they correspond only to each
other.

While all other properties of corresponding model elements might differ from
one model to the other, we require that the naming conventions used are con-
sistent. Having unambiguous and well-defined naming conventions is an integral
part of good software engineering practices. This becomes evident with large-
scale industry software production. When dealing with models synthesized by a
reverse engineering process, model elements usually have unique identifiers by
default. Unnamed primary elements do not belong to correspondence relation-
ships.
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Fig. 3. Metamodel instances of diagrams A and B

Figure 2 shows two example UML class diagrams. While overly simple, they
are sufficient for demonstrating the techniques presented in this paper. Figure
3 shows metamodel instances for the diagrams A and B presented in Figure 2.
The uniquely corresponding model elements and their links (meta-association
instances) are shown in boldface. The interesting properties of model elements
are also shown as attribute values.

2.3 Operation Definitions and Reconciliation

While the conventional set-theoretical union and intersection are symmetric by
nature, our interpretation of the corresponding UML set operations is asymmet-
ric. This results from the fact that corresponding elements can have different
and conflicting states. From a structural point of view, union and intersection
do produce symmetric results.

Definition 3. Union( A, B ) contains all model elements from models A and
B. Uniquely corresponding elements are merged and their meta-association in-
stances are redirected to the merged model elements.

Definition 4. Intersection( A, B ) contains only the uniquely corresponding
model elements.
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How the potential differences between the states of corresponding model ele-
ments should be interpreted depends on their relationship. The default strategy
is asymmetry: to favor the first operand over the second one. Section 3 discusses
additional reconciliation strategies and directives. For an operation Op(A,B),
the participating operands can relate to each other in the following ways:

– Abstraction level. The model at a lower level of abstraction is typically more
complete and should be favored over the other.

– Evolutionary phase. The model at a latter stage of evolution is typically
more refined.

– Level of completeness. The more complete model could be preferred over a
model fraction.

The interpretation of difference in the UML context is somewhat different
than the conventional set-theoretical definition. Due to the nature of UML mod-
els, difference is defined in two forms: a preserving difference and a destructive
difference. The former preserves all those primary elements whose secondary
elements do not have corresponding element in the other diagram. The latter re-
moves all those secondary elements whose primary element has a corresponding
element in the other diagram.

Definition 5. Preserving difference( A, B ) contains all model elements in A
that do not have a uniquely corresponding model element in B, the primary
parent elements of the included secondary elements, and the end elements of the
included relationships.

Definition 6. Destructive difference( A, B ) contains all primary elements in
A that do not have a uniquely corresponding element in B, their secondary ele-
ments, and the relationships between them.

Figure 4 shows the results of union, intersection, preserving difference, and
destructive difference between example diagrams A and B of Figure 2. The oper-
ations are performed on basis of the unique correspondence relationship shown in
Figure 3. With union, all model elements are included in the resulting diagram.
With intersection, only the common model elements are included. Preserving dif-
ference leaves class Contract intact because of the operation getClient(), while
destructive difference removes the class. By asymmetry, class Client remains ab-
stract in every diagram, and the multiplicity of the Contract association end is
1.

The operation definitions themselves do not guarantee that the resulting
UML diagrams conform to UML’s abstract syntax or its well-formedness rules.
The former case occurs very frequently in practice with diagrams that are not
complete specifications. For example, diagram B in Figure 2 is invalid in the
sense that it does not define a type for attribute name. An example latter case
is a union resulting with circular inheritance hierarchies. The set operations are
defined only for those input diagrams that produce well-formed results.
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2.4 Past, Present, and Future Implementation

The set operations have been originally implemented and evaluated on top of
TED [19], a Nokia proprietary UML CASE tool. The operations were used in
a study comparing reverse engineered UML models of a moderate sized Java
program Mathaino produced by different reverse engineering tools [8]. The size
of the model was around 450 classes, of which the core part selected as input
operand was around 100 classes. The results of the study suggest that these tech-
niques can be implemented and used in a meaningful way for real-life software
engineering tasks.

Initial prototype versions of the operations have been implemented on top
of xUMLi [1], a tool-independent UML processing platform. xUMLi offers an
implementation of the UML metamodel conforming to the UML version 1.4, im-
port and export functionality for XMI, Rational Rose [13], and TED. It further
offers a visual scripting mechanism for defining tasks for software engineering
processes, and an API, supporting COM automation, that allows the model ma-
nipulation operations to be written in high-level scripting languages like Python.

3 Extending the Approach

The principles presented in this paper are straightforward and rely heavily on the
sensibility of the input diagrams, and on the selected software engineering process
to produce meaningful and unique names for identifiers. This is a reasonable
assumption and further supported by the fact that a vast majority of the similar
approaches rely on these techniques ([3], pp.58).

It is possible to extend the approach with a set of heuristic rules that pay
attention to the patterns present in the diagrams, on the states of the model
elements, etc. The simple approach presented in Section 2, relating unnamed
relationships with identified end elements, could be extended to handle larger
model fragments.

One potential, albeit heavy way to extend the approach is to introduce a
set of heuristic rules that would give approximations on the semantic distances
between model elements. With a combination of such measures, together with
suitable threshold values, it might be an interesting approach for determining
counterpart elements. For example, if two unnamed classes would have almost
the same set of UML Features (i.e., attributes, operations), the designer could
be notified and given a chance to confirm the assumption. Even if the elements
would not represent the same semantic concept, this information could never-
theless be useful for increasing the designer’s insight of the model, and could
possibly indicate a need for restructuring the design (e.g. extracting the shared
features into a common parent class).

As always, the possibility for user interaction should be available. Even
though the set operations can be performed automatically, the designer should
be given a chance to affect how the operations are executed. Analogously to the
composition relationship concept of Clarke [3], the designer can define directives
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that can override the default functionality. The directives can be arbitrary fil-
ters, OCL constraints, or new strategies appended to the original set operation
implementation. The designer can either define direct dependencies, or she could
be given a chance to interactively decide which elements should be included in
the correspondence relationship and which not.

4 Other Diagram Types

This section discusses how set operations could be defined for the UML diagrams
types not covered in Section 2. While by definition it is possible to perform the
operations on any two arbitrary metamodel instances, deriving a meaningful
correspondence relationship between their model elements becomes much harder
when issues like instance identity and behavior are taken into account.

4.1 Interaction Diagrams

Interaction diagrams (i.e., sequence diagrams, collaboration diagrams) describe
how a set of instances collaborates via exchanging messages to perform a certain
task. Interaction diagrams are not full specifications. Instead, they give examples
of how a particular task is performed by the system.

Since an interaction diagram describes its behavior with a set of messages,
finding a correspondence relationship between two interaction diagrams be-
comes essentially an effort on finding corresponding messages. This is clearly
not straightforward. Since every message represents communication at a single,
unique point in time, how can one decide which messages correspond to, or
how they are interleaved with, each other in two arbitrary interaction instances?
While the correspondence could be concluded with explicitly defined time mark-
ers, state information, or interaction patterns preceding the message, there does
not seem to exist a general schema for deriving such a relationship. While in
theory UML facilitates the representation of parallel execution in a single se-
quence diagram, in practice its notation is not well suited for such algorithmic
representation of interaction. Thus, merging of a set of sequence diagrams is
performed more meaningfully if they are synthesized into a state machine [10].

As a pragmatic viewpoint to interaction diagram integration, if the two inter-
actions can be considered orthogonal, their union (merge) can be meaningfully
defined as concatenation, possibly with explicit ordering. This approach can be
taken if, for example, the two interactions belong to individual aspects or Themes
[4]. Our implementation follows this approach.

4.2 Statechart Diagrams and Activity Diagrams

There exist several ways of composing statechart diagrams. However, name-
based techniques are very seldom feasible, since statechart diagrams specify the
full behavior of a system or a subsystem under design: they are typically complete
and not decomposed into separate parts. When the behavior of a larger system
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is defined using a set of statechart diagrams, the diagrams are usually subdia-
grams that can be composed to concurrent state machines at the higher level.
When a statechart diagram is composed of several parts, this is usually done
by composing the resulting statechart diagram synthetically. In principle, if all
states were named with unique identifiers, the techniques presented in this paper
could be applied. Methods for composing statechart diagrams are introduced, for
example, by Glinz [6] and Schönberger et al. [14]. Glinz introduces a method for
formal composition of scenarios into an integrated, consistent statechart-based
model, while Schönberger et al. presents an algorithm for synthesizing UML
statechart diagrams from a set of collaboration diagrams.

4.3 Object Diagrams, Deployment Diagrams, and Component
Diagrams

Object diagrams are instance level diagrams. With deployment diagrams and
component diagrams, there exists two alternative forms: specification level dia-
grams and instance level diagrams. Only the latter ones are concerned here. It is
possible to derive a meaningful correspondence relationship between elements in
instance diagrams. The most obvious situation occurs when the instances have
dedicated unique names. Instance diagrams typically describe snapshots of the
system at some point in time, so it is often not useful to perform set operations
on them.

5 Related Work and Discussion

While there exists numerous CASE tools supporting UML , these tools generally
fall short in exploiting the dependencies between individual model elements in
model fragments. Of the current tools, to the knowledge of the author, Rational
XDE [12] provides most support for merging UML models. By default, the XDE
model comparing and merging tools assume that the input UML models have
a common ancestor, that is, the elements share the same unique IDs in the two
or more model files. However, XDE also provides functionality for generating
a correspondence relationship between model elements not sharing a common
ancestor.

With XDE, the user can select two or more model files to be compared
and/or merged together. The results are shown as parallel repository tree struc-
tures, where the nodes graphically indicate whether given model elements are
recognized, and how they have changed from one model to the next. The poten-
tial problems with the nodes, conflicts, can be solved automatically using default
functionality, or they can be solved by hand. If the user decides to merge the
models, the tool generates a new, merged model. While the model is merged,
the individual diagrams are not. The function for deriving the correspondence
relationship is proprietary and not publicly accessible. Consequently, the user
cannot extend the process of generating the correspondence relationship. Fur-
thermore, XDE does not merge diagrams, nor does it give the user a chance to
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browse the UML model in a way that would show which parts of the model are
common to all included models, and which originate from a single model.

With the approach described in this paper, the user can affect the process of
deriving the correspondence relationship and select individual (sub)packages or
diagrams as starting points for the process. Furthermore, the results from the
correspondence relationship can be used not only for merging the models, but
also for generating their intersection or difference. The resulting model can be
further modified before exporting back to the CASE tool used, if indeed it is
exported: the resulting model can also be seen as a transient view to the system,
thus being used as means for navigating the design for gaining a better insight.

From the viewpoint of Subject-Oriented Design [2], the UML set operations
can be seen as a mechanism for composing the system from, and decomposing it
into smaller model fragments, each describing a single aspect or a concern. The
research done with Theme/UML [18] comes perhaps closest to the work pre-
sented in this paper. The UML set operations can also address the problem with
the structural mismatch between the specification of requirements for software
systems and the specification of object-oriented systems. This mismatch stems
from the fact that there are typically several non-functional units of interest
and cross-cutting features present in the requirements of the software that are
scattered throughout the object-oriented model. At the same time, individual
modeling elements cater for several different features simultaneously, thus lead-
ing to tangling. This structural mismatch results in reduced comprehensibility
and poorer traceability of design models [17].

Clarke addresses these issues with composition semantics that is an analo-
gous mechanism with the set operations. Clarke provides a very comprehensible
study on the merging of the individual UML metamodel elements. One of the
main differences of the work presented in this paper and by Clarke is that while
Theme/UML extends the UML metamodel with several new concepts, our ap-
proach relies solely on the standard UML. With Theme/UML, the user has to
explicitly define the composition relationships between individual subjects. The
work in this paper relies on a visual scripting language to provide a description
of the process that is to be applied. Clarke offers the user the concept of compo-
sition patterns, a template mechanism for defining collaboration and behavior.
Furthermore, Theme/UML takes a stand on the implementation mechanisms to
be used and introduces mechanisms for merging operation calls. On the other
hand, the work described in this paper relies on a concrete implementation on
a tool-independent model-processing platform, which has been already imple-
mented and integrated with import and export facilities for, e.g., Rational Rose.

This paper presented UML set operations, motivated their use, and placed
the approach in context with other work parallel to the one presented here. The
operations have been implemented and tested on moderate size case material.
The operations are intended to be transferred on top of the xUMLi platform
and expected to be evaluated with two large-scale industry case studies during
year 2003. In addition to their usage as a part of a larger framework for defining
model processing operations related to specific software engineering tasks, these
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techniques also have potential usage scenarios related to the Subject-Oriented
paradigm. Set operations on UML models provide a simple, unifying basis for
model composition required for various purposes in UML-based software devel-
opment.
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