On Complexities of Models

Complexities of algorithms under different models (RAM, TM, ...) differ somewhat, but "not too much"

Crucial distinction: What can be solved/computed in polynomial time vs. what requires super-polynomial time

At this level, Turing Machine and RAM are equally powerful models

Refined Church-Turing Thesis

Turing-solvability/computability in polynomial time \equiv Algorithmic solvability/computability in polynomial time

Shown by simulations between models

![Simulation Diagram]

Theorem Let M be a deterministic Turing Machine with time complexity $T(n)$. Then M can be simulated by a RAM M' with $T_{\text{unit}} = O(T(n))$ and $T_{\log} = O(T(n) \log T(n))$

Proof (sketch)

Let TM M have k tapes

Construct RAM M' that simulates it

Store TM tape cells in RAM memory cells

How to represent contents of k (unlimited) TM tapes in RAM memory?

Use R_i, $i = 1, \ldots, k$ for the address where the symbol at tape head i is stored

Auxiliary variables: R_{k+1}, \ldots, R_c

Simulate tape cells with remaining registers:

Cells at distance j from the start position are simulated by a block of $2k$ registers:

The cell at position j (right) on tape i is simulated by register $c + 2(jk + i)$, and cell j (left) by register $c + 2(jk + i) + 1$
∼ Active cell of tape i can be read (written) with instruction `load *i (store *i)`

Shift of tape head i is simulated with incrementing/decrementing R_i by -2^k
(or by -1, to pass the start position of the tape head)

Then it is straightforward to simulate transitions of TM with RAM instructions

Unit-cost time complexity of RAM M' increases by a constant factor only wrt $T(n)$

Time complexity $T(n)$ implies space complexity $O(T(n))$ for TM M

∼ values of tape head addresses are $O(T(n))$

∼ T_{log} of RAM M' is $O(T(n) \ log \ T(n))$

\[\square\]

Theorem Let M be a RAM whose logarithmic-cost time complexity is $T(n)$. Then it can be simulated with a TM M' whose time complexity is $O((T(n))^3)$

Proof (sketch)

Let's first skip simulation of `mul` and `div` instructions

Tapes of TM M':
1: input
2: output
3: auxiliary
4: simulation of RAM memory

Contents of tape 4, to simulate RAM with registers $i_1, ..., i_n$:

\[\text{b # # ... # #} \]

(“Register addresses and contents in binary")

**TM simulation of `load *13` ($AC \gets R[R_{13}]$):

1. Write addr to auxiliary tape

2. Search from memory tape

3. Copy < 13 to aux tape

4. Repeat the search

5. Copy $<< 13 >>$ to aux tape

Other instructions simulated similarly
RAM M with logarithmic-cost time complexity $T(n)$ can perform at most that many instructions, and manipulate at most that many bits

\leadsto the "memory tape" fits in $O(T(n))$ cells

Each instruction can be simulated by scanning the memory tape a few times

\leadsto TM M' works in time $O(T(n)^2)$

TM can perform mul and div instructions in $O(l^2)$ wrt the length of their operands

\leadsto Total time for simulation is $O(T(n)^3)$

- \hfill \Box

Observe that many combinations of polynomial computations are polynomial:

Lemma Let $p(n) = a_0 + a_1 n + \cdots + a_k$ and $q(n) = b_0 + b_1 n + \cdots + b_l$ be polynomials of degree k and l, respectively ($a_k, b_l > 0$). Then

- (a) $p(n) + q(n)$ is a polynomial of degree $\max(k, l)$,
- (b) $p(n)q(n)$ is a polynomial of degree $k + l$, and
- (c) $p(q(n))$ is a polynomial of degree kl

For example, these take polynomial time:

- (a) polynomial-time executions in a row,
- (b) repeating polynomial-time computation polynomially many times;
- (c) applying polynomial-time algorithms to input that is polynomially larger ($q(n)$) than the original (n)

\leadsto polynomial-time TM computation can be simulated with RAM in polynomial time, and vice versa

\leadsto polynomial time RAM (or pseudocode) sufficient as specs for polynomial-time TMs