Solving Hard Problems

We need to solve NP-hard problems, too

We can apply heuristics, which may allow some solve relatively large instances to be solved, or efficiently computable approximate algorithms.

First consider heuristics called "Branch-and-bound"

"Branch-and-bound" uses a bound of estimated cost for pruning the search space.

In a minimization problem we search for a solution v whose cost $c(v)$ is minimal.

There B&B applies a lower bound $b()$, which assigns to each partial solution u an estimate such that

$$b(u) \leq c(v)$$

for each complete solution v that contains u.

If c is the cost of some candidate solution, there is no need to continue to complete a partial solution u if $b(u) \geq c$.

"Branch-and-bound"

- Heuristics for solving difficult optimization problems.

Example: TSP

- Variation of breadth-first search, to prune the search space, using a bound on the objective function.

Consider optimization problems whose solution s has a positive cost $c(s) > 0$.

In hard problems, the search space of (partial) solutions is super-polynomial wrt input size.

Example ("Branch and bound" for TSP)

The length of a TSP route is at least $\lceil S/2 \rceil$, where S is the sum length of two shortest edges adjacent to each vertex:

$$\left\lceil (1 + 3) + (3 + 6) + (1 + 2) + (3 + 4) + (2 + 3) \right\rceil / 2 = 14$$

Similar lower bound for routes that contain edges $(a, b), (b, d)$ and (b, d):

$$\left\lceil (1 + 3) + (3 + 7) + (1 + 2) + (3 + 7) + (2 + 3) \right\rceil / 2 = 16$$
Can fix the start (say, a) and direction (say, b before c) \(\sim \frac{41}{2} = 12 \) candidate solutions

Generate them, applying the lower bound to prune suboptimal ones (and to extend partial solutions in a "best first" order):

The optimal route \((c(a, b, d, e, c, a) = 16) \) is found by examining 1/3 of candidates

Maximization \(\rightarrow \) prune using an upper bound

Upper bound:

Process items in decreasing order of their unit value \(a_i/t_i \)

Let \(u \) be a selection of items \(\{1, \ldots, i\} \) with total volume \(t \) and value \(a \). Then its extensions can have value at most

\[
b(u) = a + (T - t)(a_{i+1}/t_{i+1})
\]

Example (Knapsack with B&B)

Task: Pack maximally valuable load of given items \(1, \ldots, n \), in volume \(T \)

Candidate solutions:
Subsets of items, whose total volume \(\leq T \)

Search space:
Item subsets, generated in increasing order

Can arrange as a binary tree:

Root \(\sim \emptyset \)

Left (right) child of a node at level \(i \)
\(\sim \) include (exclude) item \(i + 1 \)

Example \(T = 10; \) item vol value \(a_i/t_i \)

\[
\begin{array}{cccc}
1 & 4 & 40 & 10 \\
2 & 7 & 42 & 6 \\
3 & 5 & 25 & 5 \\
4 & 3 & 12 & 4 \\
\end{array}
\]

B&B search (with "best-first" heuristic):
Approximation algorithms

Approximate solutions can be computed efficiently for some optimization problems — but for some other problems approximation seems essentially as difficult (NP-hard) as finding the exact optimum.

Example (Approximated vertex cover)

A vertex cover for a graph is a subset of its vertices which includes at least one endpoint of each edge.

Finding a minimal vertex cover is NP-hard.

An approximative solution:

\[S := \emptyset; \]
\[\textbf{while } E \neq \emptyset \textbf{ do} \]
\[\text{Select some edge } \{u,v\} \in E; \]
\[S := S \cup \{u,v\}; \]
\[\text{Delete from } E \text{ any edges that are adjacent to } u \text{ or } v; \]
\[\textbf{return } S; \]

Algorithm finds a vertex cover in linear time.

How far is \(S \) from an optimal cover \(S^* \)?

\(S^* \) contains at least one endpoint of each edge \(\{u,v\} \) selected by the algorithm \(\sim \)
\[|S|/2 \leq |S^*| \]

Accuracy of Approximation

The relative error of an approximated solution \(s_a \) wrt an optimal solution \(s^* \):
\[|c(s_a) - c(s^*)|/c(s^*) \]

in minimization \(c(s_a) \geq c(s^*) \)
in maximization \(c(s_a) \leq c(s^*) \)

An approximation algorithm is an \(\epsilon \)-approximation, if its solutions \(s_a \) satisfy
\[|c(s_a) - c(s^*)|/c(s^*) \leq \epsilon \]

For example, 0.1-approximation

in minimization:

in maximization:

TSP can be approximated efficiently in metric graphs, where each \(u, v \) and \(r \) satisfy
\[d(u, v) \leq d(u, r) + d(r, v) \]

1. \(T \leftarrow \) minimal spanning tree;
2. \(P \leftarrow \) path traversing edges of \(T \) twice;
3. \(C \leftarrow P \) bypassing nodes already visited;

Accuracy vs. optimal path length \(l(C^*) \)?
\[l(C) \leq l(P) = 2l(T) \leq 2l(C^*) \]
Approximation of TSP in unrestricted graphs is hard:

Theorem If \(\mathcal{P} \neq \mathcal{NP} \), then TSP has no polynomial \(k \)-approximation for any \(k > 0 \)

Proof. Assume that TSP has a poly-time \(k \)-approximation algorithm \(A \)

We show that using \(A \), we could solve the NP-complete Hamiltonian circle (HC) problem in polynomial time (\(\rightarrow \mathcal{P} = \mathcal{NP} \))

Now \(A \) finds TSP routes \(r_a \) with

\[
c(r_a) \leq (1 + k)c(r^*)
\]

Transform a given HC-instance \(G = (V, E) \) into a TSP graph \(G' \) with

\[
d(u, v) = \begin{cases}
1 & \text{if } \{u, v\} \in E \\
(k + 1)|V| & \text{if } \{u, v\} \not\in E
\end{cases}
\]

If \(G \) has a Hamiltonian circle, then

\(G' \) has a TSP route of length \(|V| \) \(\Rightarrow \)

\[c(r_a) \leq (1 + k)|V|\]

If \(G \) has no Hamiltonian circle, then any TSP route in \(G' \) has length \(> (k + 1)|V| \) \(\Rightarrow \)

\[c(r_a) > (1 + k)|V|\]

Thus \(G \in HC \iff c(r_a) \leq (1 + k)|V| \)

Full polynomial \(\epsilon \)-approximation for Knapsack

Knapsack is much easier to solve approximatively, even at requested accuracy

Next:

An algorithm that finds \(\epsilon \)-approximations for Knapsack in time \(O(n^2/\epsilon) \)

That is, Knapsack has a full polynomial \(\epsilon \)-approximation, that is, algorithm that works in time \(O(p(n, 1/\epsilon)) \), where \(p() \) is a polynomial

Good approximations can be found by an interesting application of an exact pseudo-polynomial algorithm

Consider Knapsack instance

\[K = (c_1, \ldots, c_n; t_1, \ldots, t_n; T)\]

Here \(c_i \) and \(t_i \) are integer values and volumes of the items. We search for an optimal load \(S^* \subseteq \{1, \ldots, n\} \) such that

\[\sum_{i \in S^*} t_i \leq T\]

and the value

\[c(S^*) = \sum_{i \in S^*} c_i\]

is maximal
Exact optimum can be found using Dynamic Programming, to compute feasible solutions (S,c,t), where S is a load with value c and volume t:

proc Knapsack($c[1..n]$, $t[1..n]$, T) **returns** Set $L := \{ (0,0,0) \}$;
for $i := 1$ to n do
for $(S, c, t) \in L$ do
if $t + t_i \leq T$ then
$L := L \cup \{ (S \cup \{ t \}, c + c_i, t + t_i) \}$;
for $(S, c, t), (S', c', t') \in L$ with $c = c'$ do
if $t > t'$ then $L := L \setminus \{ (S, c, t) \}$;
else $L := L \setminus \{ (S', c', t') \}$;
Choose $(S, c, t) \in L$ with largest c;
return S;
L stores of equal-value loads only those whose volume is smallest; Thus $|L| \leq c^* + 1$
The algorithm can be implemented to run in time $O(n \times |L|) = O(nc^*)$

Time can be reduced by scaling the values of the problem down →

dependent redacted...

Let S_d be an optimal solution for K_d
How good is S_d, as a solution to the original instance K (wrt its optimal solution S^*)?
c(S_d) = $\sum_{i \in S_d} c_i = d \sum_{i \in S_d} (c_i/d)$
$\geq d \sum_{i \in S_d} [c_i/d]$
$\geq d \sum_{i \in S^*} [c_i/d] \quad (S_d$ is optimal for $K_d)$
$\geq d \sum_{i \in S^*} (c_i/d - 1) = \sum_{i \in S^*} (c_i - d)$
$v^* = v - \sum_{i \in S^*} d \geq v^* - nd$

Thus $v^* - nd \leq c(S_d) \leq v^*$ and so

c(S_d)/$c^* \leq nd/c^*$
$\sim S_d$ is an nd/c^*-approximation for K

Choice of d controls accuracy and time:
c(S_d) $\leq c^*/d \rightarrow$ proc. Knapsack finds an nd/c^*-approximation, in time $O(nc^*/d)$

With choice $d = nd/c^*$ we get an c^*-approximation in time $O(n^2/c)$

But we don’t know the optimum c^*!

Compute a 0.5-approximation c', using greedy heuristics in time $O(n \log n)$;
Then $c^*/2 \leq c' \leq c^*$

Choice $d = nd/c'$ gives, using Knapsack procedure, an

$n(\epsilon c'/n)/c^*$-approximation
which is now also an
$
\epsilon$-approximation

With these choices $c' \geq c^*/2$ and $d = \epsilon c'/n$, the time complexity of Knapsack is

$O(nc^*/d) = O(n^2 c^*/(\epsilon^2))$
$= O(n^2/\epsilon)$

But what if $\epsilon d/n < 1$?

Should we scale the values bigger?

No: Then $\epsilon' < n/\epsilon$, and procedure Knapsack finds even an exact solution in time

$O(nc^*) = O(nc^*) = O(n^2/\epsilon)$