NP Completeness

Many problems are NP-complete; no polynomial-time solution is known for them, but the existence of such is not known impossible either.

Define problem classes \mathcal{P} and \mathcal{NP}:

\[\mathcal{P} = \{ L | \text{some deterministic TM recognizes } L \text{ in time limited by some polynomial } \} \]

\[\mathcal{NP} = \{ L | \text{some non-deterministic TM recognizes } L \text{ in time limited by some polynomial } \} \]

Obviously $\mathcal{P} \subseteq \mathcal{NP}$, but does it hold that $\mathcal{P} = \mathcal{NP}$?

Example: $m \times m$ monkey puzzles

NP-complete problems are the "most difficult" ones within class \mathcal{NP}

Comparing difficulty of problems (within polynomial time):

Polynomial reduction

Language A is polynomial-time reducible to B,

\[A \leq_{P} B \]

if we can compute a function f such that

\[x \in A \iff f(x) \in B \]

in polynomial time

If problem L can be solved in polynomial time, by

1. non-deterministically choosing a candidate solution, and
2. verifying it,

then L belongs to class \mathcal{NP}

If $A \leq_{P} B$, then "$w \in A$?" is (within polynomial time) at most as difficult as the question "$w \in B$?":

Let f be a polynomial reduction $A \leq_{P} B$

\sim membership test for A:

\begin{verbatim}
procedure memberOfA(w) returns boolean
 w':= f(w);
 return memberOfB(w');
end procedure
\end{verbatim}

If $A \leq_{P} B$ and

1. $B \in \mathcal{P}$, then $A \in \mathcal{P}$;
2. $A \notin \mathcal{P}$, then $B \notin \mathcal{P}$.
Definition of NP-completeness

\(L \) is **NP-hard** \((\text{NP-vaikaa})\), if all languages of \(\mathcal{NP} \) are polynomially reducible to \(L \).

\(L \) is **NP-complete** \((\text{NP-täydellinen})\), if

1. \(L \in \mathcal{NP} \)
2. \(L \) is NP-hard

The question of efficient solvability of any NP-complete problem captures the famous \(\mathcal{P} \subseteq \mathcal{NP} \) problem:

Theorem Let \(L \) be a NP-complete problem. Then \(L \in \mathcal{P} \) \(\iff \mathcal{P} = \mathcal{NP} \)

Proof:

"\(\Leftarrow \)" If \(\mathcal{P} = \mathcal{NP} \), then \(L \in \mathcal{P} \)

"\(\Rightarrow \)" Assume \(L \in \mathcal{P} \). Let \(A \in \mathcal{NP} \). Since \(A \leq_p L \), the question \(\text{"} w \in A \text{"} \) can be solved in polynomial time as \(\text{"} f(w) \in L \text{"} \) \(\rightarrow A \in \mathcal{P} \)

How do we show problems NP-hard?

By reduction \textit{from} some NP-hard problem:

(\textbf{NB} direction!)

Theorem If \(L \) is NP-hard and \(L \leq_p L' \), then also \(L' \) is NP-hard.

Proof. Let \(A \in \mathcal{NP} \), and \(f \) reduction for \(A \leq_p L \) in time \(p(n) \)

Let \(g \) be reduction for \(L \leq_p L' \) in time \(q(n) \)

Construct \(f \circ g \):

\[
\begin{align*}
 w' := f(w); \\
 \text{return } g(w'); \\
\end{align*}
\]

Now \(f \circ g \) is a reduction \(A \leq_p L' \)

Observations on Satisfiability

Example \(w = (\neg x \vee y) \land \neg y \)

Value under a given truth assignment is easy to compute:

E.g., \(x \leftarrow F, y \leftarrow T \):

Satisfiability is straightforward to check:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>((\neg x \vee y) \land \neg y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

but tedious
Idea of the proof:

\[A \in NP \iff A = L(M) \text{ for some NTM } M \text{ with polynomial time compl. } p(n) \]
- using these, construct polynomial reduction
 \[w \mapsto \text{Accept}_A(w), \text{ such that } w \in L(M) \iff \text{Accept}_A(w) \in SAT \]

First show that we can restrict to 1-tape Turing machines:

Lemma Each language of class \(NP\) is accepted by some one-tape NTM in polynomial time

Proof. (Sketch)

Let \(M\) be TM with \(k\) tapes. Represent them in \(TM M'\) by a single tape with \(2k\) "tracks".
Tracks \(2i\) correspond to tapes of \(M'\), and tracks \(2i - 1\) to positions of tape heads:

\[\begin{array}{l}
\text{tape 1} \\
\text{tape 2} \\
\text{tape 3} \\
\end{array} \]

If \(T_M(n) \leq p(n)\), then \(S_{M'}(n) \leq 2p(n)\)

\(M'\) simulates a single transition of \(M\):

1. Tape head initially at left, and state corresponds to state \(q\) of \(M\);
2. Scan the tape, moving to state that corresponds to symbols \(a_1, \ldots, a_k\) pointed by simulated tape heads;
3. Choose some transition in accordance to the transition relation \(\delta(q, a_1, \ldots, a_k)\) of \(M\).
4. Return tape head to left; On the way update the symbols at the simulated tape heads

One step of \(M\) is simulated by \(O(p(n))\) steps of \(M'\)

\(\sim M'\) works in time \(O(p(n)^2)\) \(\square\)

Theorem SAT is NP-complete
(S. Cook, 1971)

Proof. (Sketch)

1. SAT \(\in NP\): Guess a truth assignment and check whether it satisfies the input formula

2. NP-hardness: Let \(A \in NP\) be recognized with 1-tape NTM \(M\), \(T_M(n) = p(n)\)

Transform \(M\)'s input \(w\) in polynomial time to formula \(\text{Accept}_A(w)\), such that
\(w \in A \iff \text{Accept}_A(w) \in SAT\)

Formula \(\text{Accept}(w)\) describes accepting computations of \(M\) with input \(w\)
Let the states and the tape symbols of M be $\{q_0, \ldots, q_k\}$ and $\{a_0, \ldots, a_m\}$ ($a_0 = b$).

Use different variables for denoting contents of tape squares, and the state + tape-head position, at different times $0, \ldots, p(n)$:

- $a_i^{s,t} \iff$ at time t, square s contains symbol a_i.
- $q_j^{s,t} \iff$ at time t, tape-head is at square s and M is in state q_j.

The number of these variables is $O(p(n)^2)$.

Accept(w) can, in polyn. time, be simplified into **Conjunctive Normal Form** (CNF)

$$D_1 \land \cdots \land D_k,$$

where each D_i is a disjunction (a clause) of literals (variable or its negation).

\Rightarrow **CNF-SAT** = {satisfiable CNF-formulas} is NP-complete, too.

(Often SAT \equiv CNF-SAT)

Example $(a \lor b \lor \overline{c}) \land (\overline{a} \lor \overline{b}) \land (b \lor \overline{c}) \land (c)$

Each clause must become true, meaning that

some of its literals must become true

Let’s restrict (CNF-)SAT further:

3SAT = \{ w | w is satisfiable and in CNF-form, with exactly 3 literals in each clause \}

Example:

$$(a_1 \lor a_2) \land (\overline{a}_1 \lor \overline{a}_2 \lor a_3) \in$ CNF-SAT – 3SAT

An equivalent 3CNF-formula:

$$(a_1 \lor a_2 \lor b) \land (a_1 \lor a_2 \lor \overline{b}) \land (\overline{a}_1 \lor \overline{a}_2 \lor a_3)$$
Theorem 3SAT is NP-complete

Proof

(i) 3SAT $\in \mathcal{NP}$: Same as with SAT $\in \mathcal{NP}$

(ii) NP-hardness: CNF-SAT \leq_p 3SAT by transforming too short or too long clauses f_i of formula $w = f_1 \land \cdots \land f_m$ as follows:

$$f_i = (l_1) \sim (l_1 \lor b_1 \lor b_2) \land (l_1 \lor b_1 \lor \overline{b_2})$$

$$f_i = (l_1 \lor l_2) \sim (l_1 \lor l_2 \lor b_1) \land (l_1 \lor l_2 \lor \overline{b_1})$$

$$f_i = (l_1 \lor l_2 \lor l_3 \lor \cdots \lor l_n) \sim (l_1 \lor l_2 \lor \overline{b_2}) \land (l_2 \lor l_3 \lor \overline{b_3}) \land \cdots \land (l_{n-2} \lor l_{n-1} \lor \overline{l_n})$$

This can be done in linear time, and the new formula is satisfiable iff w is \square

Other NP-complete problems

Colorability

Instance: Pair (k, G), where k is an integer and G a graph

Accept the input if vertices of G can be colored using k colors without any two neighbors getting the same color

Example

3, $v_1, v_2, v_3, (v_1, v_2), (v_1, v_3), (v_2, v_3)$ \in Colorability

2, $v_1, v_2, v_3, (v_1, v_2), (v_1, v_3), (v_2, v_3)$ $\not\in$ Colorability

Construct an "assignment subgraph":

For each clause $f_i = (l_1 \lor l_2 \lor l_3)$, construct a "clause subgraph":

10

17

18

19
Example: $G(w)$ for $w = (a \lor b \lor c) \land (\bar{a} \lor b \lor c)$:

$G(w)$ can be constructed in linear time.

Now w is satisfiable iff $G(w)$ is 3-colorable:

a) If graph $G(w)$ has a 3-coloring, where $T = \text{color}(t)$, $F = \text{color}(f)$, $R = \text{color}(r)$, the color of each literal is either T or F.

In each clause subgraph, the color of at least one literal can be seen to be T.

\Rightarrow the formula is satisfied by assigning True to the literals that are colored by T.

b) If formula w is satisfiable, assign the color of nodes for True literals to T (and set color of others to F).

\rightarrow In each clause subgraph, at least one literal node is colored T.

This can be extended into a full 3-coloring (where node t gets color T).

Color minimization problem: Find out the chromatic number of a graph, that is, smallest number of colors to get different color to the end points of each edge.

Also optimization (or search) problems are called NP-hard, if their polynomial-time solution would imply $P = NP$.

Color minimization is obviously NP-hard: $(k, G) \in \text{Colorability} \iff$ the chromatic number of G is at most k.

Conversely, an efficient algorithm for a decision problem often leads to an efficient solution of the corresponding optimization problem, too.

For example, to find out the chromatic number of graph G:

- $k := 0$;
- repeat
 - $k := k + 1$;
- until $(k, G) \in \text{Colorability}$;
- return k;

Exact cover problem

Input: Set S_0 and its subsets S_1, S_2, \ldots , S_n.

Accept the input, if we can pick $S_{i_1}, \ldots , S_{i_m}$ ($1 \leq i_1 < \ldots < i_m \leq n$), such that

$S_0 = S_{i_1} \cup S_{i_2} \cup \ldots \cup S_{i_m}$,

and $S_{i_j} \cap S_{i_k} = \emptyset$.

Example

$\{1, 2, 3, 4, 5\}, \{1, 3\}, \{2, 3, 4\}, \{2, 4\}, \{5\}$

$\in \text{ExactCover}$

$\{1, 2, 3, 4, 5\}, \{1, 3\}, \{2, 4\}, \{2, 4\}, \{3, 5\}$

$\notin \text{ExactCover}$
Theorem Exact Cover is NP-complete

Proof. Exact Cover ∈ \textit{NP}: Guess which subsets to include, and check

NP-hardness is shown by reduction

3-colorability \leq_p Exact Cover:
Let the instance of Colorability be

\[3, v_1, \ldots, v_n, (u_1, v_1), \ldots, (u_{m}, v_{m})\]

For each vertex \(v_i\) and color \(l \in \{1, 2, 3\}\), construct a set \(C_{v_i,l}\) as

\[\{v_i\} \cup \{[e,l] \mid \text{edge } e \text{ emanates from } v\}\]

\(S_0 \leftarrow \text{union of all these sets}\)

In addition, \(D_{el} = \{[e,l]\} \text{ for each } e \in E \text{ and } l \in \{1, 2, 3\}\)

This ExactCover instance can be constructed in polynomial time.

Now \(G\) is 3-colorable iff \(S_0\) has an exact cover using \(C_{el}\) and \(D_{el}\) sets:

3-colorability \Rightarrow Exact cover:
Assume that \(G\) has a 3-coloring

Then we get an exact cover by taking sets \(C_{v,\text{color}(v)}\) and those of \(D_{el}\) whose item \([e,l]\) is not included in \(\bigcup C_{v,\text{color}(v)}\):

Each member of \(S_0\) is covered

Singletons \(D_{el}\) do not overlap with other members of the cover

\(C_{u,\text{color}(u)}\) and \(C_{v,\text{color}(v)}\) can have a common member \([e,l]\) only if \(e = (u,v)\) and \(\text{color}(u) = l = \text{color}(v)\), but this is not allowed by the correct coloring.

\textbf{Knapsack problem}

Input: Positive integers \(s, i_1, \ldots, i_n\)

Accept the input, if one can choose \(1 \leq j_1 < j_2 < \cdots < j_k \leq n\) such that \(s = i_{j_1} + \cdots + i_{j_k}\)

Theorem Knapsack is NP-complete

Proof. (1) Knapsack ∈ \textit{NP}: Guess which numbers to pick, and check their sum

(2) \text{NP-hardness: ExactCover} \leq_p \text{Knapsack}:
Let an instance of ExactCover be \(S_0, S_1, \ldots, S_n\), where \(S_0 = \{a_1, \ldots, a_m\}\)

Represent each \(S_i\) as a \((n+1)\)-base number

\[s_i = d_{im}d_{i,m-1} \ldots d_{i1}, \text{ where}\]

\[d_{ij} = \begin{cases} 1 & \text{if } a_j \in S_i \\ 0 & \text{if } a_j \notin S_i \end{cases}\]
Now S_0 has an exact cover using S_1, \ldots, S_n → a subsequence of s_1, \ldots, s_n sums up to s_0:

Exact cover ⇒ Knapsack: If S_{i_1}, \ldots, S_{i_k} is an exact cover of S_0 then obviously

$$s_{i_1} + \ldots + s_{i_k} = s_0$$

Knapsack ⇒ Exact cover: Assume that

$$s_{i_1} + \ldots + s_{i_k} = s_0$$

is a solution to the Knapsack instance

Numbers are $(n + 1)$-based and $k \leq n$ ⇒ no carry appears in the addition

Therefore, for each $j = 1, \ldots, m$,

$$s_{0j} = s_{i_{1j}} + \ldots + s_{i_{kj}} = 1$$

⇒ $s_{ij} = 1$ for exactly one $l \in \{1, \ldots, k\}$

⇒ $a_{ij} \in S_l$ for exactly one $l \in \{1, \ldots, k\}$

Thus S_{i_1}, \ldots, S_{i_k} is an exact cover of S_0 \[\square\]

What about the strange base $(n + 1)$?

Numbers can be transformed to a different base (say, 10 or 2) in polynomial time

⇒ Knapsack is NP-complete also in ordinary d-base number systems

Unary representation is exponentially longer than d-based ($d > 1$), which may influence complexity

(Remember: wrt the length of input)

Example: Knapsack instance

$11, 5, 14, 4, 3$

using unary coding:

$1111111111, 11111, 11111111111111, 1111, 111$

Indeed, unary-coded Knapsack can be solved, using Dynamic Programming, in time $O(|w|^2)$

Theorem TSP is NP-complete

Proof. \(TSP \in \text{NP}^c\):

Guess the ordering, and check it’s OK

NP-hardness: Knapsack ≤_P TSP:

Let k, i_1, \ldots, i_n be an instance of Knapsack

Construct a graph with nodes $\{v_0, \ldots, v_n+1\}$

and edges with weights

$$w(v_q, v_r) = \begin{cases} i_r & \text{if } q < r \leq n \\ 0 & \text{if } q > r \text{ or } r = n + 1 \end{cases}$$
Now Knapsack has a solution iff the graph contains a TSP route of length k:

1) Assume a TSP route of length k

The path enters each vertex once

$\Rightarrow k$ is sum of unique numbers from i_1, \ldots, i_n

2) Assume $i_{j_1} + \ldots + i_{j_m} = k$ ($j_1 < \ldots < j_m$)

Order vertices as follows:

$v_0, v_{j_1}, \ldots, v_{j_m}, v_{n+1}, v_{l_1}, \ldots, v_{l_p}$

where i_1, \ldots, i_p are indices from

$\{1, 2, \ldots, n\} \setminus \{j_1, \ldots, j_m\}$

in descending order

This order is a TSP route of length k \(\Box\)

On efficient solvability

Small difference in problem formulation can change complexity drastically:

| Unsolvable | NP-hard problem
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Hitting problem</td>
</tr>
<tr>
<td>NP</td>
<td>Hitting's NP-complete problem</td>
</tr>
</tbody>
</table>

| P | Exact poly-time algorithms
| NP | Exact NP-hard
| $\Theta(n \log n)$ | $\Theta(n^2)$
| $\Theta(n)$ | $\Theta(n!)$

Exercise