Lecture 1: Introduction

Arrangements and Overview

Motivation: Molecular Sequence Data

Base model: Strings and Sequences

Methodology: Analysis of Algorithms

BSA Lecture 1: Introduction – p.1/21

Lecture 1: Introduction

Arrangements and Overview

Motivation: Molecular Sequence Data

Base model: Strings and Sequences

Methodology: Analysis of Algorithms

BSA Lecture 1: Introduction – p.2/21

Arrangements

16 lectures, 7 exercise sessions

Home exam (tentatively) due to March 23

(Retake on April 29)

Grading: $E = \frac{\text{(exam points)}}{\text{(max exam points)}}$, where $H = \frac{\text{fraction of solved homework assignments}}{3}$ required to pass

Course is based on the textbook Algorithms on Strings, Trees, and Sequences by D. Gusfield, out of which we plan to cover, selectively, Parts I–III.

BSA Lecture 1: Introduction – p.3/21

Arrangements

- 16 lectures, 7 exercise sessions
- Home exam (tentatively) due to March 23
- (Retake on April 29)
- Grading: $E = \frac{\text{(exam points)}}{\text{(max exam points)}}$, where $H = \frac{\text{fraction of solved homework assignments}}{3}$ required to pass
- Course is based on the textbook Algorithms on Strings, Trees, and Sequences by D. Gusfield, out of which we plan to cover, selectively, Parts I–III.

BSA Lecture 1: Introduction – p.4/21

Motivation: Molecular Sequence Data

(I try to offer simple explanations of some central issues, even though I’m NOT an expert in Biology.)

Genetic material: DNA (deoxyribonucleic acid)

- a polymer of nucleotides
 - phosphate group + ribose sugar + base
- essentially a string of bases (emäät) denoted by A, C, G and T (adenine, cytosine, guanine, and thymine)

The sequence of nucleotides, identified by their bases, determines the genome of an organism.

BSA Lecture 1: Introduction – p.5/21

Production of Proteins

In a process called gene expression:

1. (Transcription) DNA information is copied into RNA, with base U (uracil) replacing T (thymine)
 - in so called 5‘ → 3’ direction
2. RNA is translated (by ribosomes) into a protein.

Proteins are

- polymers made of 20 different amino acids;
- central for life, for example, as material of cells and as enzymes.

Protein is, roughly, “the meaning of a gene”. (They also produce RNA for ribosomes.)

BSA Lecture 1: Introduction – p.6/21

Arrangements

- graduate (laudatur) course in Computer Science (3 cu)
- about algorithmic methods applicable to the exploitation of molecular sequence data (DNA, RNA, protein)
- Language of instruction: English or Finnish (?)

For a rough syllabus, see http://www.cs.uku.fi/~kilpelai/BSA05/syllabus.html

BSA Lecture 1: Introduction – p.7/21

What is this course about?

Deterministic string algorithms that operate on molecular sequence data. These are treated

- in CS within Stringology (merkkijonoalgoritmien tutkimus) or Combinatorial Pattern Matching (kombinatoriinen hahmosovitus)
- in Biology within Computational Biology or Bioinformatics

Emphasis on ideas and methods that are applicable to bio-sequence related problems of today, and, hopefully, of the future

BSA Lecture 1: Introduction – p.8/21

What this course is NOT about?

This is NOT a complete course on bioinformatics. We do NOT

- treat statistical methods, or molecular structures other than sequences
- study the use of specific computer packages, databases or services
- little attention is paid to the implementation (programming) of the methods.

BSA Lecture 1: Introduction – p.9/21

Motivation: Molecular Sequence Data

(I try to offer simple explanations of some central issues, even though I’m NOT an expert in Biology.)

Genetic material: DNA (deoxyribonucleic acid)

- a polymer of nucleotides
 - phosphate group + ribose sugar + base
- essentially a string of bases (emäät) denoted by A, C, G and T (adenine, cytosine, guanine, and thymine)

The sequence of nucleotides, identified by their bases, determines the genome of an organism.

BSA Lecture 1: Introduction – p.10/21

Production of Proteins

In a process called gene expression:

1. (Transcription) DNA information is copied into RNA, with base U (uracil) replacing T (thymine)
 - in so called 5‘ → 3’ direction
2. RNA is translated (by ribosomes) into a protein.

Proteins are

- polymers made of 20 different amino acids;
- central for life, for example, as material of cells and as enzymes.

Protein is, roughly, “the meaning of a gene”. (They also produce RNA for ribosomes)
Translation and the Genetic Code

Ribosomes locate triplets of bases (codons) in the RNA, and create amino acids for them in the resulting protein:
- Start codon AUG also encodes methionine
- Triplets UAA, UAG and UGA act as stop codons

Genetic code is redundant (4^3 - 3 = 61 > 20), and thus robust: single-base mistakes do not necessarily effect the encoded amino acid sequence.

Genome vs. Proteins

Lots of non-coding junk (residue?) appears in the genome (~ 95% for human):
- between genes and
- as introns btw encoding regions called exons

For example, the human gene associated with cystic fibrosis has:
- total length over 10^6 nucleotides
- about 1000 nucleotides, in 25 exons (< 0.1% of total gene length)

In most bacteria, most of DNA (~ 85%) is in genes, and introns are rare.

Relevance of Primary Structure

A lot of biologically relevant information can be inferred from amino acid order (primary structure) alone (even though proteins are actually complex 3D structures; also, much less of the latter are known).

First fact of biological sequence analysis (Gusfield, Sect. 10):
High sequence similarity usually implies significant functional or structural similarity.

Locating sequences of a data base that are similar to a new one, or locating conserved subsequences (signatures or motifs) in related sequences is central activity in Molecular Biology.

Statistics of molecular sequences

(Gusfield, Sect. 15.1)

Number of . . .
- genes (or assumed coding regions) in the first completely sequenced DNA of a free-living organism (Haemophilus influenzae rd, 1995) was 1,743

In mid-90’s
- ~ 300,000 genes (or parts of them, of different organisms) stored in DNA archives, totaling > 500 Mb (with growth of ~ 75%/year)
- ~ 100,000 different protein sequences in major archives, totaling about 25,000,000 amino acids

Some statistics of genetic material

The length of . . .
- a gene is a few kb’s (kb = 1000 base pairs)
 - average human gene is 30 kb
 - most proteins are hundreds of amino acids (≤ 500)
 - the entire genome a few million nucleotides for prokaryotes (e.g. bacteria) (estimated)
 - billions for eukaryotes (eukaryotised)
 - worm 100 Mb (100 · 10^6 base pairs)
 - human 3 Gb (3 · 10^9 base pairs)
 - # of human genes estimated 20,000–25,000 (10/’04)

Subsequences of strings

A subsequence (alisekvenssi) s_1 . . . s_k of S = s_1 . . . s_n is an ordered selection of some k ≥ 0 characters of S, that is, 1 ≤ i_1 < i_2 < . . . < i_k ≤ |S|.

Example: String “California”
- some substrings: “lifo”, “forni”
- some subsequences: “Carni”, “alora”

Methodology: Asymptotic Analysis

We estimate the efficiency of algorithms in terms of (worst-case) complexity, i.e., dependency of (maximally needed) resources (time, space) on input size.

Standard asymptotic notations for upper and lower bounds:
- \(f(n) = O(g(n)) \) ("of order \(g(n) \)"
 - \(f(n) \leq cg(n) \) for some \(c \) and all sufficiently large \(n \)
- \(f(n) = Θ(g(n)) \) ("at least of order \(g(n) \)"
 - \(g(n) = Θ(f(n)) \), and
- \(f(n) = Ω(g(n)) \) ("exactly of order \(g(n) \)"
 - \(f(n) = O(g(n)) \) and \(f(n) = Ω(g(n)) \)
Observations and refinements

Insignificance of constant coefficients \(c > 0 \):

\[
c \times f(n) = \begin{cases}
O(f(n)) & \text{if } c \geq 0 \\
\Theta(f(n)) & \text{if } c = 1 \\
\Omega(f(n)) & \text{if } c < 0
\end{cases}
\]

--- programmer competence, compiler and HW ignored — Focus is on *scalability* wrt increasing input size (\(n \))

A stronger version of \(f(n) = O(g(n)) \):

\(f(n) = o(g(n)) \) iff \(\lim_{n \to \infty} f(n)/g(n) = 0 \)

(*of strictly lower order than \(g(n) \)*)

Simplification rules

Insignificance of lower-order terms:

\(g(n) = o(f(n)) \Rightarrow f(n) \pm g(n) = \Theta(f(n)) \)

Transitivity:

\(f(n) = \Theta(g(n)) \) and \(g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n)) \)

Example:

\[
\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = 2(n^2 + n) = \Theta(n^2) = \Theta(n^2)
\]

Worst case vs Average case

Average case complexity would often be informative, but when compared to worst-case complexity, it

- is often much more difficult to derive, and
- does not guarantee that the real complexity is never worse than estimated.

Relevance of Asymptotics?

Asymptotic estimates hide a lot of information. Are they useful?

- Provide an *implementation-independent* characterization of the *scalability* of algorithms

Do they tell of practical efficiency?

- In principle, *no*
- Often, *yes*: an asymptotically less efficient algorithm *could* be more efficient in practice, but only on small inputs

Experimenting practical algorithms on real data sets is the right thing to do!

Relevance for Computational Biology?

- Asymptotics ~ inputs growing without limit
- Sequence DBs grow, but not infinitely
- Patterns of interest, say, proteins, have a fixed size

Personal belief: With current technology, sequence collections and patterns of interest are “large enough” such that asymptotic estimates reflect the real usefulness of algorithms.

Reading assignment: Review basics of complexity analysis from algorithms course notes or some textbook (e.g., Cormen, Leiserson and Rivest: *Intro to Algorithms*)