Exact String Matching Problem

Perhaps the most basic string problem of all:

Given pattern \(P \) and target \(T \), find all occurrences of \(P \) in \(T \) (that is, substrings equal to \(P \)).

Example: Pattern \(P = \text{"aba"} \) occurs in text

\[
\begin{align*}
i & : 123456789012 \\
T & : \text{bbabaxababay}
\end{align*}
\]

at locations \(i = 3 \), \(i = 7 \), and \(i = 9 \).

Multiple applications: word processing, file searching (Unix grep), information searching on the Net, sequence databases

Naive Pattern Matching

Compare \(P[1..n] \) char-by-char against each \(n \)-length substring of \(T[1..m] \):

\[
\begin{align*}
\text{for } i & = 1 \text{ to } m - n + 1 \text{ do} \\
& \quad \text{if } T[i] = P[1] \text{ then} \\
& \quad \quad \text{if } l = 1 \text{ and } T[i+l] = P[l+1] \text{ do } l := l + 1; \\
& \quad \quad \text{if } l = n \text{ then Report a match at } i; \\
& \quad \text{endif} \\
& \quad \text{endif}; \\
& \text{endfor};
\end{align*}
\]

Drawback: \(n(m - n + 1) = \Theta(mn) \) comparisons in the worst case; Rare in word processing, but probable if small alphabet and lots of repetitions in strings (as in bio-sequences)

Ideas for Speed-up I

I: Use longer shifts that avoid comparisons known to fail:

\[
\begin{align*}
T & : \text{xabcdabcdabcx} \\
P & : \text{abcdabcx} \\
& \quad \text{abcdabcx} \quad \text{(AHA: } P[1] \text{ doesn't occur until a shift by 4) }
\end{align*}
\]

\(\sim \) total of 17 comparisons

Ideas for Speed-up II

II: Avoid comparisons known to succeed:

\[
\begin{align*}
T & : \text{xabcdabcdabcx} \\
P & : \text{abcdabcx} \\
& \quad \text{abcdabcx} \quad \text{ababcdcx} \quad \text{abcx}
\end{align*}
\]

From earlier comparisons, we know the prefix \(\text{"abc"} \) to match; \(\sim \) total of 14 comparisons

Next: Preprocessing the pattern to implement these ideas

\(\sim \) linear-time \(O(|P| + |T|) \) pattern matching algorithms
Fundamental Preprocessing

Developed by Gusfield, to explain diverse classical algorithms; also leads to simple linear time matching.

Given a string $S[1 \ldots n]$ and $i \in \{2, \ldots, n\}$, define Z_i to be the length of the longest common prefix of S and $S[i \ldots n]$.

Example: For $S[1 \ldots 11] = aabcazbzbaz$,

$$Z_2 = 1, Z_3 = Z_4 = 0$$

$$Z_5 = 3 (\equiv S[5 \ldots 11] = aabcazbaz)$$

$$Z_6 = 2, Z_{10} = 1, Z_{11} = 0$$

If S is not clear from context, we write $Z_i(S)$ instead of Z_i.

How to compute the Z_i values?

A direct approach $\Theta(n^2)$ time $O(n)$.

Definitions for a linear time solution:

For $Z_i > 0$, let the Z-box at i be $S[i \ldots i + Z_i - 1]$ (occurrence of a maximal non-empty prefix starting at i).

For every $i \geq 2$, let r_i be the right-most of endpoints of any Z-box at $i \leq i$. (If there is no such, let $r_i = 0$.)

If $r_i > 0$, let l_i be the left end of a Z-box $S[j \ldots r]$ occurring at $j \leq i$. (Otherwise $l_i = 0$.)

Example of Z-boxes

(a) with Z-boxes surrounded by brackets, and indices below:

| a | b | b | a | b | a | | x | a | b | a |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Then

$Z_2 = 0, r_2 = l_2 = 0$

$Z_3 = 5, r_3 = l_3 = 3$

$Z_4 = 0, r_4 = l_4 = 3$

$Z_5 = 3, r_5 = l_5 = 3$ (or 3)

$Z_6 = 0, r_6 = l_6 = 7$ (or 3, or 5)

Fundamental Preprocessing in Linear Time

Basic method: a single scan of positions $k = 2, \ldots, n$ in S, utilizing Z_i values already computed (2 \leq k < n);

Variables l and r for the most recent l_i and r_i. (That is, r_i is the right-most end of any Z-box seen so far)

To begin, Z_2 is computed by comparing $S[1 \ldots n]$ and $S[2 \ldots n]$ explicitly, until the first mismatch.

How to use computed Z_i values?

Example: Suppose that $k = 121, r_{120} = 131$ and $l_{120} = 101$; we’re inside Z-box $S[101 \ldots 131] = S[1 \ldots 31]$. Thus $S[121 \ldots 131] = S[21 \ldots 31]$. (Draw a picture!)

Now if Z_{2i} is, say, 9, we know that $Z_{2i+1} = 9$ (without examining any characters).

General method for computing Z_i, \ldots, Z_n,

the Z algorithm:

Initialize: $l := 0; r := 0$;

Then compute Z_i for each $k = 2, \ldots, n$ as follows:

The Z Algorithm

for $k := 2, \ldots, n$ either case 1 or case 2 applies:

1. if $k > r$ then

 $Z_k = \max\{j \leq n - k + 1 | S[1 \ldots j] = S[k \ldots k + j - 1]\}$

 If $Z_k > 0$, set $l := k + Z_k - 1$;

2. if $k \leq r$,

 we’re inside Z-box $S[k \ldots r] = S[1 \ldots Z_k]$, and thus $S[k \ldots r] = S[k \ldots r]$ for $k' = k - 1 + t$.

 (Draw a picture!)

 Let $t := S[k \ldots r]$;

 (a) If $Z_k < k$, we know to set $Z_k := Z_k$;

 (b) Otherwise $S[k \ldots r] = S[k' \ldots Z_k] = S[1 \ldots t]$. Find

 $j = \max\{j \leq n-r | S[r+1 \ldots r+j] = S[t+1 \ldots t+j]\}$

 and set $Z_k := t + j, r := r + j$, and $i := k'$.

Correctness and Complexity

Theorem 1.4.1 Algorithm Z is correct.

Proof. Straight-forward inspection.

Theorem 1.4.2 Algorithm Z works in time $O(|S|)$.

Proof. Each of the $|S| - 1$ iterations takes, besides the character comparisons (resulting in a match or a mismatch), constant time. Out of the character comparisons

- each mismatch ends an iteration \rightarrow number of them $< |S|$
- each match increments the value of r at least by 1 \rightarrow number of successful comparisons $\leq |S|$.

Simplest Linear-Time Matching

The Z algorithm provides a linear-time matching algorithm, which is perhaps the simplest of all:

Given $P[1 \ldots n]$ and $T[1 \ldots m]$,

let $S := P$ (where S appears in neither P nor T);

Compute $Z_i(S)$ for $i = 2, \ldots, m + n + 1$;

This takes time $O(n + m)$.

Because of S each $Z_i \leq n$.

Now each position $i > n + 1$ with $Z_i = n$ (and only such) indicates an occurrence of P in T at position $i - (n + 1)$.

BSA Lecture 2: Exact string matching – p.13/18
Space Complexity

How much space do we need for the \(Z \) values?

Computed \(Z_0 \) values are used in Case 2 of Algorithm \(Z \). There we have \(k \leq r \) and \(S[k \ldots r] = S[k' \ldots Z_l] \). Therefore \(k' \leq Z_l \leq n \), and thus it suffices to store \(Z_l \) values for \(i \leq n \), i.e., to use \(O(|P|) \) space.

NB After the preprocessing, algorithm \(Z \) performs exactly the comparisons shown on Slide "Ideas for Speed-up II" btw characters of \(P \) and \(T \).

Why Continue?

We’ve got a simple linear-time matching algorithm. Why to study others?

1. Boyer-Moore algorithm is very efficient in practice ("sub-linear time")
2. Knuth-Morris-Pratt generalizes to matching a set of patterns in linear time --- Aho-Corasick algorithm
3. suffix trees support, after \(O(|T|) \) time preprocessing, matching in time \(O(|P|) \) (and have many other applications)