Biosequence Algorithms, Spring 2005
Lecture 5: The Shift-And Method

University of Kuopio
Department of Computer Science

Seminumerical String Matching

Most matching methods based on char comparisons

“Seminumerical” methods that apply bit-level and/or arithmetic operations:

- FFT-based \(O(n \log m) \) solution to the match count problem:
 - For each target position \(j \), find the number of matching characters in corresponding positions of \(P[1 \ldots n] \) and \(T[j-n+1 \ldots j] \)
- Karp-Rabin pattern matching, based on comparing hash values of \(P \) and of substrings of \(T \)

We discuss Shift-And, which is a practical and efficient matching method for short patterns

Shift-And: Basic idea

Consider locating exact occurrences of pattern \(P[1 \ldots n] \) in target \(T[1 \ldots m] \), by going through positions \(j = 1, \ldots, m \)

Basic idea: The state of the search is represented as a state vector, which is a bit vector \(S[1 \ldots n] \)

The vector records, simultaneously, occurrences of any prefix of \(P \) that end at the current target position \(j \):

\[
S[i] = 1 \text{ iff } P[1 \ldots i] = T[j-i+1 \ldots j]
\]

(for \(i = 1, \ldots, n \))

Example: Consider pattern \(P = \text{“ennen”} \), and the state of search at position 6 of text “mennentullen”

Now prefixes \(P[1 \ldots 2] = \text{“en”} \) and \(P[1 \ldots 5] = \text{“ennen”} \) of \(P \) both match a suffix of \(T[1 \ldots 6] \) \(\rightarrow \) the state vector \(S \) is

\[
\begin{bmatrix}
0 \\
1 \\
1 \\
1
\end{bmatrix}
\]

NB: We’ve found an occurrence of \(P \) iff \(S[n] = 1 \)

How to compute \(S \) for each \(j = 1, \ldots, m \)?

Computing the State Vectors

Consider values of \(S \) as columns \(M(1), M(2), \ldots, M(m) \) of an \(n \times m \) matrix \(M \):

\[
\begin{array}{cccccccccccc}
\text{T:} & m & e & n & n & e & n & t & u & l & l & e & n \\
\hline
P & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
a & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
n & 2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
n & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
e & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
n & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Now \(M(j)[i] = 1 \) iff \(P[1 \ldots i] \) matches a suffix of \(T[1 \ldots j] \)

\(M(j)[i] = 1 \) iff \(T[j] = P[i] \), and \(M(1)[i] = 0 \) for \(i > 0 \)

Computing the Next Column of \(M \)

How about \(M(j)[i] \) for \(i, j > 17 \)?

Now \(M(j)[i] = 1 \) iff \(P[1 \ldots i] = T[j-i+1 \ldots j] \)

\(\iff P[1 \ldots i-1] = T[j-i+2 \ldots j] \land P[i] = T[j] \)

So, we can compute the columns in order \(j = 1, \ldots, m \)

But this takes clearly time \(\Theta(nm) \) (and character comparisons)!

If \(|P| \) is bounded by a constant, we can compute each column in constant time \(\Theta(m) \) time matching algorithm

Is this a practical observation?

Computing State Vector Fast

(Remember: State vector = the current column of \(M \))

Assume that \(|P| \leq w \), where \(w \) is the processor word length (normally 32 or 64). Then we can represent the state vector as a single number, and update it really fast \(\rightarrow \) a linear-time matching method fast in practice, too

For updating the state vector in a single step, compute for each \(a \in \Sigma \) an \(n \)-bit occurrence mask \(U(a) \), which indicates the occurrences of char \(a \) in \(P \):

\[
U(a)[i] = \begin{cases}
1 & \text{if } P[i] = a \\
0 & \text{otherwise}
\end{cases}
\]

Example of Occurrence Masks

Occurrence masks for pattern “ennen”:

\[
\begin{array}{cccccccccccccccc}
U & a & b & c & d & e & f & \ldots & m & n & o & \ldots & z \\
\hline
\text{e } & 1 & 0 & 0 & 0 & 0 & 1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
n & 2 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
n & 3 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
e & 4 & 0 & 0 & 0 & 0 & 1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
n & 5 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 1 & 0 & 0 & \ldots & 0 \\
\end{array}
\]

These can be computed in time \(\Theta(|\Sigma|n) \)

\((= \Theta(|\Sigma|) \) if \(n \) is bounded by a constant)
Updating the State Vector

Define an operation which shifts elements of bit-vector S forward by one, and inserts 1 as the first element:

\[
\text{BitShift}(S)[i] = \begin{cases}
1 & \text{for } i = 1 \\
S[i-1] & \text{for } i = 2, \ldots, n
\end{cases}
\]

This can be implemented in C-like languages as follows:

\[
S = (S << 1) | 1
\]

Now ANDing BitShift(S) with the occurrence mask of the current text character $T[j]$ updates the state vector correctly, from column $M(j-1)$ to $M(j)$:

Correctness of State Vector Updates

Theorem If $S = M(j-1)$, then

\[
\text{BitShift}(S) \text{ AND } U(T[j]) = M(j)
\]

Proof. Assume that $S[i] = M(j-1)[i]$ for $i = 1, \ldots, n$, and let $S' = \text{BitShift}(S) \text{ AND } U(T[j])$.

\[
S'[1] = 1 \iff U(T[j])[1] = 1 \iff T[j] = P[1] \iff M(j)[1] = 1
\]

For $i > 1,$

\[
S'[i] = 1 \iff S[i-1] = 1 \text{ and } U(T[j])[i] = 1 \\
M(j-1)[i-1] = 1 \text{ and } T[j] = P[i] \\
M(j)[i] = 1
\]

So, $S'[i] = M(j)[i]$ for each $i = 1, \ldots, n$. \qed

Updating the State Vector: Example

Consider moving from text position 3 to 4, while searching for pattern “ennen” in text “mennentulien” ($T[4] = n$):

\[
S = M(3) = \text{BitShift}(S) \text{ AND } U(0) = M(4)
\]

\[
\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\end{array}
\]

Shift-And implementation

A sketch of a full algorithm using C-like bit operations:

```c
compute_U_masks(P);
S = 0;
one_at_row_n = 1 << (n-1);
for j := 1 to n do
    S = BitShift(S) \& U(T[j]);
    if (S \& one_at_row_n) then
        Report an occurrence at j - n + 1;
endfor;
```

Extension to Inexact Matching

Wu and Manber (CACM 10/1992) extended Shift-And to inexact matching or matching with errors:

Find all target positions where P occurs with at most k errors (single-char mismatches, insertions or deletions)

Now we discuss mismatches only. (We’ll dwell into inexact matching in general later.)

Example: `agrep` occurs with 2 mismatches at posn 4 of

```
1 2 3 4 5 6 7 8 9 10 11
a a t c g a a a a a
```

and with 4 mismatches at positions 2 and 6

Shift-And with Mismatches: Main ideas

Wu-Manber method is efficient for small $|P|$ ($\leq w$) and k (≤ 4). It is included in the approximate search tool called `agrep`

Instead of a single table M (as before), compute tables

M^0, M^1, \ldots, M^k, each of size $n \times mc$

$M^i[j][i] = 1$ iff $P[1 \ldots i]$ matches $T[j-i+1 \ldots j]$ with at most i mismatches

Obs 1: $M^0 = M$

Obs 2: $M^i[j][i] = 1$ iff $T[j-n+1 \ldots j]$ is an occurrence of P with at most i mismatches

Obs 3: For $i \geq 1$, $M^i(1)[i] = 1$, and $M^i(1)[i] = 0$ when $i > 1$

How to Compute M^k

Compute column $j-1$ of each table before column j, and for each j tables in order M^0, M^1, \ldots, M^k

- column $M^k(j)$ from $M^k(j-1)$ as in Shift-And

When computing column of $M^i(j)$ for $l > 0$ and $j > 1$,

- column $M^{l-1}(j-1)$

- column $M^l(j - 1)$, and

- column $M^{-1}(j)$

have been computed

(Instance of dynamic programming)
Computing Table Entries

When is \(M_l(j)[i] = 1 \) (for \(l > 0 \))? \(\iff \) When does \(P[1 \ldots i] \) match \(T[j - i + 1 \ldots] \) with at most \(l \) mismatches? (*)

1. If \(P[1 \ldots i] \) matches \(T[j - i + 1 \ldots] \) with at most \(l - 1 \) mismatches (\(\Rightarrow M_{l-1}(j)[i] = 1 \))

2. If \(P[1 \ldots i - 1] \) matches \(T[j - i + 1 \ldots j - 1] \) with at most \(l \) mismatches and \(P[i] = T[j] \) (\(\Rightarrow M_l(j - 1)[i - 1] = 1 \) and \(P[i] = T[j] \))

3. If \(P[1 \ldots i - 1] \) matches \(T[j - i + 1 \ldots j - 1] \) with at most \(l - 1 \) mismatches (\(\Rightarrow M_{l-1}^j(j - 1)[i - 1] = 1 \))

Conversely, (*) holds only if at least one of (1)–(3) holds

Computing Columns of \(M^l \)

An entire column \(M^l(j) \) can now be computed, using bit operations, as follows:

\[
M^l(j) := M^{l-1}(j) \quad \text{(1)}
\]

\[\text{OR} \quad \text{BitShift}(M^l(j - 1)) \text{ AND } U(T[j]) \quad \text{(2)}\]

\[\text{OR} \quad \text{BitShift}(M^{l-1}(j - 1)) \quad \text{(3)}\]

(1)–(3) correspond to the cases of the previous slide

Complexity

Only two columns (\(j \) and \(j - 1 \)) of each table need to be maintained \(\Rightarrow \) space complexity is \(\Theta(nk) = \Theta(k \times |P|) \)

\(k + 1 \) tables each of size \(n \times m \) are computed, each table entry in constant time \(\Rightarrow \) total time is \(\Theta(km) \)

If \(n \leq w \), each column is computed with a few machine instructions, and time is \(\Theta(km) \) (and fast in practice)