Introduction to Suffix Trees

Suffix tree is an index structure that gives efficient solutions to a wide range of complex string problems.

For example, the substring problem:
For a text S of length m, after $O(m)$ time preprocessing, given any string P either find an occurrence of P in S, or determine that one does not exist, in time $O(|P|)$

How to solve it?

Definition of a Suffix Tree

A suffix tree T for $S[1 \ldots m]$ is a rooted tree with:
- m leaves numbered $1, \ldots, m$
- at least two children for each internal node (with the root as a possible exception)
- each edge labeled by a nonempty substring of S
- no two edges out of a node beginning with the same character

Again, $L(v)$ denotes the label of a node v, i.e., the concatenation of edge labels on the path from the root to v.

Key feature:
- $L(i) = S[i \ldots m]$ for each leaf $i = 1, \ldots, m$ of T

Ensuring the Existence of a Suffix Tree

Not necessarily:
If some suffix w appears as a prefix of some other one, the path labeled by w does not lead to a leaf.
To avoid this, assume that S has a "termination character" $\$ that occurs only at the end of S (or insert one, if needed)
- no suffix can appear as a prefix of any other
- suffixes label complete paths leading to the leaves

Solving the Substring Problem

First idea: Build a keyword tree of all substrings of S
No: takes too much time ($O(n^2)$)

Second idea: It is easy to find prefixes of strings in a keyword tree. Each substring $S[i \ldots j]$ is a prefix of the suffix $S[i \ldots m]$ of S

- create a keyword tree of the m non-empty suffixes of S

The rest is just refinement . . . (yet rather complicated to get the construction time down to linear!)

Example of a Suffix Tree

The suffix tree for string $xaybxc$:

Does a suffix tree always exist?

Applying Suffix Trees to Matching

Suffix trees can be used to solve exact matching:
1. Construct the suffix tree T for text $T[1 \ldots m]$; (We’ll discuss later how to do this in $O(m)$ time)
2. Match characters of P along a path from the root
 (a) If P can be fully matched, let z be the number of leaves below the path labeled by P. Each of these is a start of an occurrence of P, and they can be collected in time $O(z)$ (Exercise)
 (b) If P doesn’t match completely, P doesn’t occur in T

Total time: $O(m + n + z)$
(1) P may end at the middle of an edge
Naive Construction of Suffix Trees

Start with a root and a leaf numbered 1, connected by an edge labeled \emptyset.

Enter suffixes $S[2..m]$, $S[3..m]$, ..., $S[m]$ into the tree as follows:

- To insert $K_i = S[1..m]$, follow the path from the root matching characters of K_i until the first mismatch at character $K_i[j]$ (which is bound to happen)
- (a) If the matching cannot continue from a node, denote that node by w.
- (b) Otherwise the mismatch occurs at the middle of an edge, which has to be split.

Example of the Naive Construction (2)

Entering $S[4..6] = xac$ causes the first edge to split:

- Start:
 - $xabxac$ 1
- After inserting the second and the third suffix:
 - $xabxac$ 1
 - $abxac$ 2
 - $bxac$ 3

Same happens for the second edge when $S[5..6] = ac$ is entered.

Example of the Naive Construction (3)

After entering suffixes $S[5..6] = ac$ and $S[6] = e$ the suffix tree is complete:

- bxc 1
- xa 2
- e 3
- c 4
- x 5

Complexity of the Naive Construction

Each suffix $S[i..m]$ is entered in the tree in time $\Theta(|S[i..m]|) \rightarrow$ total time is $\Theta(\sum_{i=1}^{m-1} i) = \Theta(m^2)$

Observations:

- Number of edges in a suffix tree T is at most $2m - 1 \rightarrow$ the size of T is $O(m)$ (Exercise)
- On the other hand, the total length of edge labels can be $\Theta(m^2)$ (Exercise)

As a simple example consider the suffix tree of $abc...xyz$, whose total length of edge labels is $\sum_{j=1}^{m} j = 26 \times 27/2$.

For linear time we need a compact representation of edge labels.

Compact Representation

Each edge is labeled by a non-empty substring $S[i..j]$.

Compression: Represent label $S[i..j]$ by two indices i and j to the string S.

--- each edge takes only constant space, and thus $O(m)$ space suffices for the entire suffix tree of $S[1..m]$.

Example of Compact Representation

The suffix tree for a string with compacted edge labels:

- $1 2 3 4 5 6$
- $x a b x a c$
- $1.2 3.6 4$
- $2.2 6.6 6$
- $3.6 6 5$
- 3
Short History of Suffix Trees

- Weiner, 1973: the first linear-time construction
- McCreight, 1976: a more space-efficient linear-time method
- Ukkonen, 1995: A simpler linear-time construction, with all advantages of the previous, and more memory-efficient in practice

Next: Ukkonen’s linear-time construction (which is rather complex)