Ukkonen's Method

Ukkonen's algorithm constructs a suffix tree for $S[1 \ldots n]$ in linear time.

We begin with a high-level description of the method, and then describe how to implement it to run in linear time.

The method builds, as intermediate results, for each prefix $S[1 \ldots 1], S[1 \ldots 2], \ldots, S[1 \ldots n]$ an implicit suffix tree.

The implicit suffix tree of a string is what results by applying suffix tree construction to the string without an added end marker $\$$. All suffixes are included, but not necessarily as labels of complete paths leading to the leaves.

Example of Implicit Suffix Trees (1)

Example of Implicit Suffix Trees (2)

Implicit Suffix Trees of Prefixes

Denote the implicit suffix tree of the prefix $S[1 \ldots i]$ by I_i. I_i is just a single edge labeled by $S[1]$ leading to leaf 1.

Example:

Implicit suffix trees for the first three prefixes of eaxab:

I_1: eaxab
I_2: eax
I_3: ax

String Paths of I_i

So, I_i contains each suffix $S[1 \ldots i], S[2 \ldots i], \ldots, S[i]$ of $S[1 \ldots i]$ as a label of some path (possibly ending at the middle of an edge).

Let's call such labels of (partial) paths (string paths).

That is, a string path is:
- a string that can be matched along the edges, starting from the root, or equivalently
- a prefix of any node label

Ukkonen's Algorithm on a High Level

Start with $T := I_i$

Then update T to trees I_{i+1}, \ldots, I_{i+m} in m phases (vaihe).

Let $S[m+1]$ be $\$$. As the final value of T is a true suffix tree, which contains all suffixes of S (extended with $\$ $)$.

- Phase $i+1$ updates T from I_i (with all suffixes of $S[1 \ldots i]$) to I_{i+1} (with all suffixes of $S[1 \ldots i+1]$)

Each phase $i+1$ consists of extensions (lisäyskaske)

$J = 1, \ldots, i+1$.

Extension j ensures that suffix $S[j \ldots i+1]$ is in I_{i+1}.

Extension j of Phase $i+1$

Phase $j+1$ starts with $T := I_i$

Q: How to ensure that suffix $S[j \ldots i+1]$ is in the tree?

A: Extend path $S[j \ldots i]$ of T by character $S[i+1]$ (if it's not already there)?

Q: How to extend the path?
Suffix Extension Rules

Rule 1: If path $S[j \ldots i]$ ends at a leaf, concatenate $S[j + 1]$ to its edge label.

Rule 2: If path $S[j \ldots i]$ ends before a leaf, and doesn't continue by $S[i + 1]$: Connect the end of the path to a new leaf i' by an edge labeled by char $S[i + 1]$. (If the path ended at the middle of an edge, split the edge and insert a new node as a parent of leaf i'.)

Rule 3: If the path could be continued by $S[i + 1]$, do nothing. (Suffix $S[j \ldots i + 1]$ is already in the tree)

Let's call an extension that applies Rule 3 void (and applications of Rules 1 and 2 non-void)

Complexity of a Naive Implementation

Consider first a single phase $i + 1$

Each of the extension rules can be applied in constant time

Locating the ends of the paths $S[1 \ldots i], \ldots, S[i + 1 \ldots i]$ by traversing them explicitly takes time $O(\sum_{i=1}^{m} i) = O(i^2)$

Total time for all phases $i = 2, \ldots, m + 1$ is

$O(\sum_{i=2}^{m+1} i^2) = O(m^3)$

Q: How to improve this?

Locating Ends of Paths

The extensions of phase $i + 1$ need to locate the ends of all the $i + 1$ suffixes of $S[1 \ldots i]$

How to do this efficiently?

For each internal node v of T labeled by $x\alpha$, where $x \in \Sigma$ and $\alpha \in \Sigma^*$, define $s(v)$ to be the node labeled by α

We'll show that these exist, in a moment

Then a pointer from v to $s(v)$ is the suffix link of v

NB: If node v is labeled by a single char (ϵ), then $\alpha = \epsilon$ and $s(v)$ is the root

Example of Extensions

Consider phase 6 with string $S = axabxk$

Now $T = I_6$ contains all suffixes of $S[1 \ldots 6] = axabx$:

Let's call an extension that applies Rule 3 of phase 6

Example of Extensions

Consider phase 6 with string $S = axabxk$

Now $T = I_6$ contains all suffixes of $S[1 \ldots 6] = axabx$:

Extensions 1-4: $S[1 \ldots 6] = axabx, \ldots, S[4 \ldots 6] = xb$ entered by Rule 1

Extension 5: $S[5 \ldots 6] = x$ entered by Rule 2, creating leaf 5 and its parent

Extension 6: $S[6 \ldots 6] = x$ entered by Rule 3

Reducing the Complexity

To get total time down to $O(m^3)$ we need to avoid or speed up path traversals

Spending even constant time for each extension requires time

$O(\sum_{i=2}^{m+1} i) = O(m^2)$

To get total time down to $O(m)$ we also need to avoid performing some extensions at all

Let's first consider speeding up the path traversals

Intuitive Motivation for Suffix Links

Extension j (of phase $i + 1$) finds the end of the path $S[j \ldots i]$ in the tree (and extends it with char $S[i + 1]$)

Extension $j + 1$ similarly finds the end of the path $S[j + 1 \ldots i]$

Assume that v is an internal node labeled by $S[j \alpha]$ on the path $S[j \ldots i]$. Then we can avoid traversing path α when locating the end of path $S[j + 1 \ldots i]$, by starting from node $s(v)$

Q: Do suffix links always exist?

A: Yes, and each suffix link $(v, s(v))$ is easy to set:

Computation of Suffix Links

Observation: If an internal node v is created during extension j (of phase $i + 1$), then extension $j + 1$ will find out the node $s(v)$

Why?

Let v be labeled by $x\alpha$

Node v can only be created by extension rule 2

That is, v is inserted at the end of path $S[j \ldots i]$, which continued by some character $c \neq S[i + 1]$

\Rightarrow paths $xa\alpha$ and αc have been entered before phase $i + 1$

\Rightarrow in extension $j + 1$, node $s(v)$ is either found or created at the end of path $\alpha = S[j + 1 \ldots i]$
Now we can argue a linear time bound for any phase by and is thus extended by Rule 1

The possible up movement and suffix link traversal decrement current node depth at most twice

The current node depth cannot exceed \(m \) at most twice during the entire phase

On the other hand, the current node depth cannot exceed \(m \) at most twice by following downward edges at most \(3m \) times

\[\text{total time of a phase is } O(m) \]

NB: Since there are \(m \) phases, total time is \(O(m^2) \)

A few more tricks are needed to get total time linear

Speeding up Path Traversals

Consider extensions of phase \(i + 1 \)

Extension 1 extends path \(S[1 \ldots i] \) with char \(S[i + 1] \)

That is easy: Path \(S[1 \ldots i] \) always ends at leaf 1, and is thus extended by Rule 1

We can perform extension 1 in constant time, if we

\[m \]

Locating Subsequent Paths

Extension \(j \) has located the end of the path \(S[j \ldots i] \)

Starting from there, walk up at most one node either

- (a) to the root, or
- (b) to a node \(v \) with a suffix link

In case (a), traverse path \(S[j + 1 \ldots i] \) explicitly downwards from the root

Bounding the Time of Tree Traversals

Lemma 6.1.2 For any node \(v \) with a suffix link to \(s(v) \),

\[\text{depth}(s(v)) \geq \text{depth}(v) - 1 \]

That is, following a suffix link leads at most one level closer to the root

Proof. (Idea) The suffix links for any ancestor of \(v \) lead to distinct ancestors of \(s(v) \)

Now we can argue a linear time bound for any phase by considering how the current node depth can change

\(\text{(= the depth of the most recently visited node)} \)

Short-cutting Traversals

In case (b), let \(x \beta \) be the label of \(v \)

\[\Rightarrow S[j \ldots i] = x \alpha \beta \text{ for some } \beta \in \Sigma^* \]

(Draw a picture of the paths!)

Then follow the suffix link of \(v \), and continue by matching \(\beta \) down-wards from node \(s(v) \) (which is now labeled by \(\alpha \))

Having found the end of path \(\alpha \beta = S[j + 1 \ldots i] \), apply extension rules to ensure that it extends with \(S[i + 1] \)

Finally, if a new internal node \(w \) was created in extension \(j \), set its suffix link to point to the end node of path \(S[j + 1 \ldots i] \)

Locating Subsequent Paths

Extension \(j \) has located the end of the path \(S[j \ldots i] \)

Starting from there, walk up at most one node either

- (a) to the root, or
- (b) to a node \(v \) with a suffix link

In case (a), traverse path \(S[j + 1 \ldots i] \) explicitly downwards from the root

Speeding up Explicit Traversals

(Trick 1 (skip/count) in Gusfield)

Each path \(S[j \ldots i] \), which is followed in extension \(j \), is known to exist in the tree

Bounding the Edge Traversals

The possible up movement and suffix link traversal decrement current node depth at most twice

- the current node depth is decremented at most \(2m \) times during the entire phase

On the other hand, the current node depth cannot exceed \(m \) - it is incremented (by following downward edges) at most \(3m \) times

\[\text{total time of a phase is } O(m) \]

Final Improvements

Some extensions can be found unnecessary to compute explicitly

Obs 1: Rule 3 is a “show-stopper”:

- If path \(S[j + i + 1] \) is already in the tree, so are paths \(S[j + 1 \ldots i + 1], \ldots, S[i + 1] \), too

Bounding the Time of Tree Traversals

Lemma 6.1.2 For any node \(v \) with a suffix link to \(s(v) \),

\[\text{depth}(s(v)) \geq \text{depth}(v) - 1 \]

That is, following a suffix link leads at most one level closer to the root

Proof. (Idea) The suffix links for any ancestor of \(v \) lead to distinct ancestors of \(s(v) \)

Now we can argue a linear time bound for any phase by considering how the current node depth can change

\(\text{(= the depth of the most recently visited node)} \)

Bounding the Edge Traversals

The possible up movement and suffix link traversal decrement current node depth at most twice

- the current node depth is decremented at most \(2m \) times during the entire phase

On the other hand, the current node depth cannot exceed \(m \) - it is incremented (by following downward edges) at most \(3m \) times

\[\text{total time of a phase is } O(m) \]

Final Improvements

Some extensions can be found unnecessary to compute explicitly

Obs 1: Rule 3 is a “show-stopper”:

- If path \(S[j + i + 1] \) is already in the tree, so are paths \(S[j + 1 \ldots i + 1], \ldots, S[i + 1] \), too

Final Improvements (2)

Obs 2: A node created as a leaf remains a leaf thereafter
- because no extension rule adds children to a leaf
- If extension j created a leaf (numbered j), extension j of any later phase $i + 1$ applies Rule 1 (appending the next char $S[i + 1]$ to the edge label of j)

Explicit applications of Rule 1 can be eliminated as follows:
- Use compressed edge representation (i.e., indices p and q instead of substring $S[p..q]$), and represent the end position of each terminal edge by a global value e for "the current end position"

Eliminating Extensions

Denote by j_i the last non-void extension of phase i (that is, application of Rule 1 or 2)

Obs 1
- j_i extensions $1;...;j_i$ of phase i are non-void
- j_i leaves $1;...;j_i$ have been created at the end of phase i

Obs 2
- j_i extensions $1;...;j_i$ of any subsequent phase all apply Rule 1
 - $j_{i+1} \geq j_i$

\Rightarrow Execute only extensions $j_i + 1; j_i + 2;...$ explicitly in phase $i + 1$

Single Phase Algorithm

Algorithm for phase $i + 1$ with unnecessary extensions eliminated
1. Set $e := i + 1$; (implies extensions $1;...;j_i$ implicitly)
2. Compute extensions $j_i + 1; j_i + 2;...$ until $j_i > i + 1$ or Rule 3 was applied in extension j_i;
3. Set $j_{i+1} := j_i - 1$; (for the next phase)

All these tricks together can be shown to lead to linear time

Analysis of the Tuned Implementation

Let $j = 1;...;m + 1$ denote the index of the current extension

Over all phases $2;...;m + 1$ index j never decreases, but it can remain the same at the start of phases $3;...;m + 1$

- at most $2m$ extensions are computed explicitly

Similarly to the proof of Th. 6.1.1, the current node depth can be decremented at most $2m$ times, and thus the total length of all downward traversals is bounded by $5m$

Finally, T_{m+1} can be converted to the true suffix tree of $S[1..m]$ as follows:

All occurrences of the "current end position" marker e on edge labels can be replaced by $m + 1$ (with a simple tree traversal, in time $O(m)$)

Remark: Ukkonen's method is "on-line", by processing S left-to-right and having a suffix tree ready for the scanned part