Biosequence Algorithms, Spring 2005
Lecture 2

Pekka Kilpeläinen
University of Kuopio
Department of Computer Science
I: Exact String Matching
(tarkka (merkkijono)hahmon sovitus)

- the naive method
- a linear-time method based on “fundamental preprocessing”
Exact String Matching Problem

Perhaps the most basic string problem of all:

Given pattern \(P \) \((\text{hahmo})\) and target \(T \) \((\text{kohde})\), find all occurrences of \(P \) in \(T \) (that is, substrings equal to \(P \))

Example: Pattern \(P = \text{“aba”} \) occurs in text

\[
i: \quad 123456789012 \\
T: \quad \text{bbabaxababay}
\]

at locations \(i = 3 \), \(i = 7 \), and \(i = 9 \)

Multiple applications: word processing, file searching (Unix grep), information searching on the Net, sequence databases
Relevance of Exact Match Algorithms?

For practical word-processing the problem can be considered solved

Why then study exact matching?

- Efficient solutions relevant for sequence DBs. (For example, over 4 hour search in Genbank for a 30 char pattern using a popular interface (GCG) vs a few minutes using the Boyer-Moore algorithm.)
- Used as a subtask for more complex searches
- Basic ideas possibly applicable to new and less understood problems.
Naive Pattern Matching

Compare $P[1 \ldots n]$ char-by-char against each n-length substring of $T[1 \ldots m]$:

```plaintext
for $i := 1$ to $m - n + 1$ do
    if $T[i] = P[1]$ then
        $l := 1$; // chars matched
        while $l < n$ and $T[i + l] = P[l + 1]$ do $l := l + 1$;
        if $l = n$ then Report a match at $i$;
    endif;
endfor;
```

Drawback: $n(m - n + 1) = \Theta(nm)$ comparisons in the worst case; Rare in word processing, but probable if small alphabet and lots of repetitions in strings (as in bio-sequences)
Naive method “shifts” P by one position along the target:

T: xabcdabcdabcdx
P: abcdabcdx
 abcdabcdx
 abcdabcdx
 abcdabcdx
 abcdabcdx

(Legend: successful and unsuccessful comparison);
20 comparisons in total
Ideas for Speed-up I

I: Use longer shifts that avoid comparisons known to fail:

T: xabcdabcdabcdabcx
P: abcdabcx

abcdabcx (AHA: P[1] doesn’t occur
abcdabcx until a shift by 4)

⇒ total of 17 comparisons
Ideas for Speed-up II

II: Avoid comparisons known to succeed:

$T: \text{xabcdabcdabcdx}$

$P: \text{abcdabcdx}$

From earlier comparisons, we know the prefix "\text{abc}" to match; \leadsto total of 14 comparisons

Next: Preprocessing the pattern to implement these ideas

\leadsto linear-time ($O(|P| + |T|)$) pattern matching algorithms
Fundamental Preprocessing

Developed by Gusfield, to explain diverse classical algorithms; also leads to simple linear time matching

Given a string $S[1 \ldots n]$ and $i \in \{2, \ldots, n\}$, define Z_i to be the length of the longest common prefix of S and $S[i \ldots n]$

Example: For $S[1 \ldots 11] = aabcaabxaaaaz$

$$Z_2 = 1, Z_3 = Z_4 = 0$$
$$Z_5 = 3 \quad \leftarrow S[5 \ldots 11] = aabxaaaaz$$
$$\vdots$$
$$Z_9 = 2, Z_{10} = 1, Z_{11} = 0$$

If S is not clear from context, we write $Z_i(S)$ instead of Z_i
How to compute the Z_i values?

A direct approach \Rightarrow time $\Theta(\sum_{i=1}^{n-1} i) = \Theta(n^2)$

Definitions for a linear time solution:
For $Z_i > 0$, let the Z-box at i be $S[i \ldots i + Z_i - 1]$ (occurrence of a maximal non-empty prefix starting at i).

For every $i \geq 2$, let r_i be the right-most of endpoints of any Z-box at $j \leq i$. (If there is no such, let $r_i = 0$)

If $r_i > 0$, let l_i be the left end of a Z-box $S[j \ldots r_i]$ occurring at $j \leq i$. (Otherwise $l_i = 0$.)
Example of Z-boxes

Example: (with Z-boxes surrounded by brackets, and indices below):

$$
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{array}
$$

Then

$$
Z_2 = 0, \ r_2 = l_2 = 0 \\
Z_3 = 5, \ r_3 = 7, l_3 = 3 \\
Z_4 = 0, \ r_4 = 7, l_4 = 3 \\
Z_5 = 3, \ r_5 = 7, l_5 = 5, (\text{or } 3) \\
Z_8 = 0, \ r_8 = 7, l_8 = 7, (\text{or } 3, \text{ or } 5)
$$
Basic method: a single scan of positions $k = 2, \ldots, n$ in S, utilizing Z_i values already computed ($2 \leq i < k$);

Variables l and r for the most recent l_i and r_i;

(That is, r is the right-most end of any Z-box seen so far)

To begin, Z_2 is computed by comparing $S[1 \ldots n]$ and $S[2 \ldots n]$ explicitly, until the first mismatch
How to use computed Z_i values?

Example: Suppose that $k = 121$, $r_{120} = 131$ and $l_{120} = 101$; we’re inside Z-box $S[101 \ldots 131] = S[1 \ldots 31]$. Thus $S[121 \ldots 131] = S[21 \ldots 31]$. (Draw a picture!).

Now if Z_{21} is, say, 9, we know that $Z_{121} = 9$ (without examining any characters).

General method for computing Z_2, \ldots, Z_n,

the Z algorithm:

Initialize: $l := 0; r := 0$;

Then compute Z_k for each $k = 2, \ldots, n$ as follows:
for \(k := 2, \ldots, n \) either case 1 or case 2 applies:

1. if \(k > r \) then
 \[
 Z_k := \max\{j \leq n - k + 1 \mid S[1 \ldots j] = S[k \ldots k + j - 1]\};
 \]
 If \(Z_k > 0 \), set \(l := k \) and \(r := k + Z_k - 1 \);

2. if \(k \leq r \), we’re inside \(Z \)-box \(S[l \ldots r] = S[1 \ldots Z_l] \), and thus \(S[k \ldots r] = S[k' \ldots Z_l] \) for \(k' = k - l + 1 \).
 (Draw a picture!)
 Let \(t = |S[k \ldots r]|; \)
 (a) If \(Z_{k'} < t \), we know to set \(Z_k := Z_{k'} \).
 (b) Otherwise \(S[k \ldots r] = S[k' \ldots Z_l] = S[1 \ldots t] \). Find
 \[
 j := \max\{j \leq n-r \mid S[r+1 \ldots r+j] = S[t+1 \ldots t+j]\};
 \]
 and set \(Z_k := t + j \), \(r := r + j \), and \(l := k \);
Correctness and Complexity

Theorem 1.4.1 Algorithm Z is correct.

Proof. Straight-forward inspection.

Theorem 1.4.2 Algorithm Z works in time $O(|S|)$.

Proof. Each of the $|S| - 1$ iterations takes, besides the character comparisons (resulting in a match or a mismatch), constant time. Out of the character comparisons . . .

- each *mismatch* ends an iteration \rightarrow number of them $< |S|$

- each *match* increments the value of r at least by 1

\rightarrow number of successful comparisons $\leq |S|$
Simplest Linear-Time Matching

The Z algorithm provides a linear-time matching algorithm, which is perhaps the simplest of all:

Given $P[1 \ldots n]$ and $T[1 \ldots m]$, let $S := P$\T (where $\$\$ appears in neither P nor T);
Compute $Z_i(S)$ for $i = 2, \ldots, m + n + 1$;
This takes time $O(n + m)$
Because of '$\$'$ each $Z_i \leq n$.
Now each position $i > n + 1$ with $Z_i = n$ (and only such) indicates an occurrence of P in T at position $i - (n + 1)$.
How much space do we need for the Z values?

Computed $Z_{k'}$ values are used in **Case 2** of Algorithm Z. There we have $k \leq r$ and $S[k \ldots r] = S[k' \ldots Z_i]$. Therefore $k' \leq Z_i \leq n$, and thus it suffices to store Z_i values for $i \leq n$, i.e., to use $O(|P|)$ space.

NB After the preprocessing, algorithm Z performs exactly the comparisons shown on Slide “Ideas for Speed-up II” btw characters of P and T.
Why Continue?

We’ve got a simple linear-time matching algorithm. Why to study others?

- **Boyer-Moore** algorithm is very efficient in practice ("sub-linear time")
- **Knuth-Morris-Pratt** generalizes to matching a set of patterns in linear time → **Aho-Corasick** algorithm
- **suffix trees** support, after $O(|T|)$ time preprocessing, matching in time $O(|P|)$ (and have many other applications)