Biosequence Algorithms, Spring 2005
Lecture 5: The Shift-And Method

Pekka Kilpeläinen
University of Kuopio
Department of Computer Science
Seminumerical String Matching

Most matching methods based on char comparisons

“Seminumerical” methods that apply bit-level and/or arithmetic operations:

- FFT-based $O(m \log m)$ solution to the match count problem:
 - For each target position j, find the number of matching characters in corresponding positions of $P[1 \ldots n]$ and $T[j - n + 1 \ldots j]$

- Karp-Rabin pattern matching, based on comparing hash values of P and of substrings of T

We discuss Shift-And, which is a practical and efficient matching method for short patterns
Shift-And: Basic idea

Consider locating exact occurrences of pattern $P[1 \ldots n]$ in target $T[1 \ldots m]$, by going through positions $j = 1, \ldots, m$

Basic idea: The state of the search is represented as a state vector, which is a bit vector $S[1 \ldots n]$

The vector records, simultaneously, occurrences of any prefix of P that end at the current target position j:

$$S[i] = 1 \text{ iff } P[1 \ldots i] = T[j - i + 1 \ldots j]$$

(for $i = 1, \ldots, n$)
Shift-And State Vector

Example: Consider pattern $P = \text{“ennen”}$, and the state of search at position 6 of text “mennen_tullen”

Now prefixes $P[1 \ldots 2] = \text{“en”}$ and $P[1 \ldots 5] = \text{“ennen”}$ of P both match a suffix of $T[1 \ldots 6] \rightsquigarrow$ the state vector S is

\[
\begin{bmatrix}
0 \\
1 \\
0 \\
0 \\
1
\end{bmatrix}
\]

NB: We’ve found an occurrence of P iff $S[n] = 1$

How to compute S for each $j = 1, \ldots, m$?
Computing the State Vectors

Consider values of S as columns $M(1), M(2), \ldots, M(m)$ of an $n \times m$ matrix M:

<table>
<thead>
<tr>
<th>P</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Now $M(j)[i] = 1$ iff $P[1 \ldots i]$ matches a suffix of $T[1 \ldots j]$

$M(j)[1] = 1$ iff $T[j] = P[1]$, and $M(1)[i] = 0$ for $i > 0$
Computing the Next Column of M

How about $M(j)[i]$ for $i, j > 1$?

Now $M(j)[i] = 1 \iff P[1 \ldots i] = T[j - i + 1 \ldots j]$
$\iff P[1 \ldots i - 1] = T[j - i + 1 \ldots j - 1]$ and $P[i] = T[j]$
$\iff M(j - 1)[i - 1] = 1$ and $P[i] = T[j]$

So, we can compute the columns in order $j = 1, \ldots, m$

But this takes clearly time $\Theta(nm)$ (and character comparisons)!

If $|P|$ is bounded by a constant, we can compute each column in constant time $\sim \Theta(m)$ time matching algorithm

Is this a practical observation?
Computing State Vector Fast

(Remember: State vector = the current column of M)

Assume that $|P| \leq w$, where w is the processor word length (normally 32 or 64). Then we can represent the state vector as a **single number**, and update it really fast.

→ a linear-time matching method fast in practice, too

For updating the state vector in a single step, compute for each $a \in \Sigma$ an n-bit occurrence mask $U(a)$, which indicates the occurrences of char a in P:

$$U(a)[i] = \begin{cases} 1 & \text{if } P[i] = a \\ 0 & \text{otherwise} \end{cases}$$
Example of Occurrence Masks

Occurrence masks for pattern “ennen”:

<table>
<thead>
<tr>
<th>U</th>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>...</th>
<th>m</th>
<th>n</th>
<th>o</th>
<th>...</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

These can be computed in time $\Theta(|\Sigma|n)$
($=\Theta(|\Sigma|)$ if n is bounded by a constant)
Define an operation which shifts elements of bit-vector S forward by one, and inserts 1 as the first element:

$$\text{BitShift}(S)[i] = \begin{cases}
1 & \text{for } i = 1 \\
S[i - 1] & \text{for } i = 2, \ldots, n
\end{cases}$$

This can be implemented in C-like languages as follows:

$$S = (S << 1) | 1$$

Now **AND**ing $\text{BitShift}(S)$ with the occurrence mask of the current text character $T[j]$ updates the state vector correctly, from column $M(j - 1)$ to $M(j)$:
Correctness of State Vector Updates

Theorem If $S = M(j - 1)$, then
$$\text{BitShift}(S) \text{ AND } U(T[j]) = M(j).$$

Proof. Assume that $S[i] = M(j - 1)[i]$ for $i = 1, \ldots, n$, and let $S' = \text{BitShift}(S) \text{ AND } U(T[j])$.

For $i > 1$,
$$S'[i] = 1 \iff S[i - 1] = 1 \text{ and } U(T[j])[i] = 1 \iff M(j - 1)[i - 1] = 1 \text{ and } T[j] = P[i] \iff M(j)[i] = 1$$

So, $S'[i] = M(j)[i]$ for each $i = 1, \ldots, n.$
Consider moving from text position 3 to 4, while searching for pattern “ennen” in text “mennentullen” ($T[4] = n$):

\[
S = M(3) \quad \leadsto \quad \text{BitShift}(S) \quad \text{AND} \quad U(n) = M(4)
\]

\[
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{array}
\]
Sketch of a full algorithm using C-like bit operations:

```c
compute_U_masks(P);
S:= 0;
one_at_row_n:= 1 << (n-1);
for j := 1 to m do
    S:= BitShift(S) & U(T[j]);
    if (S & one_at_row_n) then
        Report an occurrence at j − n + 1;
endfor;
```
Remarks

This is sometimes called “bit(-level) parallelism”

The original authors (Baeza-Yates & Gonnet, CACM 10/1992) complemented the role of bits, and presented the method as Shift-Or. Shift-Or is a bit more efficient, but less intuitive to explain.

Experiments on English text indicate Shift-Or to be about 2.5 times faster than the naive method, and more efficient than Boyer-Moore with patterns shorter than 4–10 characters (depending on the BM implementation).

Shift-And easily generalizes to matching with wild-cards either in P or T (or both) (Exercise)
Wu and Manber (CACM 10/1992) extended Shift-And to inexact matching or matching with errors:

Find all target positions where \(P \) occurs with at most \(k \) errors (single-char mismatches, insertions or deletions)

("mismatch" = “epävastaavuus” tai “yhteensopimattomuus”)

Now we discuss mismatches only.
(We’ll dwell into inexact matching in general later.)

Example: \(atcgaa \) occurs with 2 mismatches at posn 4 of

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
\text{a} & \text{a} & \text{a} & t & a & t & c & c & a & c & a & a \\
\end{array}
\]

and with 4 mismatches at positions 2 and 6
Wu-Manber method is efficient for small $|P| \leq w$ and $k \leq 4$. It is included in the approximate search tool called *agrep*

Instead of a single table M (as before), compute tables M^0, M^1, \ldots, M^k, each of size $n \times m$:

$$M^l(j)[i] = 1 \text{ iff } P[1 \ldots i] \text{ matches } T[j - i + 1 \ldots j] \text{ with at most } l \text{ mismatches}$$

Obs 1: $M^0 = M$

Obs 2: $M^k(j)[n] = 1 \text{ iff } T[j - n + 1 \ldots j]$ is an occurrence of P with at most k mismatches

Obs 3: For $l \geq 1$, $M^l(1)[1] = 1$, and $M^l(1)[i] = 0$ when $i > 1$
How to Compute \(M^k \)

Compute column \(j - 1 \) of each table before column \(j \), and for each \(j \) tables in order \(M^0, M^1, \ldots, M^k \)

- column \(M^0(j) \) from \(M^0(j - 1) \) as in Shift-And

When computing column of \(M^l(j) \) for \(l > 0 \) and \(j > 1 \),

- column \(M^{l-1}(j - 1) \),
- column \(M^l(j - 1) \), and
- column \(M^{l-1}(j) \)

have been computed

(Instance of dynamic programming)
Computing Table Entries

When is $M^l(j)[i] = 1$ (for $l > 0$)? \Leftrightarrow When does $P[1 \ldots i]$ match $T[j - i + 1 \ldots j]$ with at most l mismatches? (*)

1) If $P[1 \ldots i]$ matches $T[j - i + 1 \ldots j]$ with at most $l - 1$ mismatches ($\Leftrightarrow M^{l-1}(j)[i] = 1$)

2) If $P[1 \ldots i - 1]$ matches $T[j - i + 1 \ldots j - 1]$ with at most l mismatches and $P[i] = T[j]$ ($\Leftrightarrow M^l(j - 1)[i - 1] = 1$ and $P[i] = T[j]$)

3) If $P[1 \ldots i - 1]$ matches $T[j - i + 1 \ldots j - 1]$ with at most $l - 1$ mismatches ($\Leftrightarrow M^{l-1}(j - 1)[i - 1] = 1$)

Conversely, (*) holds only if at least one of (1)–(3) holds
Computing Columns of M^l

An entire column $M^l(j)$ can now be computed, using bit operations, as follows:

$$M^l(j) := M^{l-1}(j)$$ \hspace{1cm} (1)

\begin{align*}
\text{OR} & \quad \text{BitShift}(M^l(j - 1)) \text{ AND } U(T[j]) \hspace{1cm} (2) \\
\text{OR} & \quad \text{BitShift}(M^{l-1}(j - 1)) \hspace{1cm} (3)
\end{align*}

(1)–(3) correspond to the cases of the previous slide
Complexity

Only two columns \((j \text{ and } j - 1)\) of each table need to be maintained \(\sim\) space complexity is \(\Theta(nk) = \Theta(k \times |P|)\)

\(k + 1\) tables each of size \(n \times m\) are computed, each table entry in constant time \(\sim\) total time is \(\Theta(knm)\)

If \(n \leq w\), each column is computed with a few machine instructions, and time is \(\Theta(km)\) (and fast in practice)