Biosequence Algorithms, Spring 2005
Lecture 6: Introduction to Suffix Trees

Pekka Kilpeläinen
University of Kuopio
Department of Computer Science
II: Suffix Trees and Their Applications
(loppuosapuut sekä niiden sovelluksia)
Suffix tree is an index structure that gives efficient solutions to a wide range of complex string problems.

For example, the substring problem:

For a text S of length m, after $O(m)$ time preprocessing, given any string P either find an occurrence of P in S, or determine that one does not exist, in time $O(|P|)$.

How to solve it?
Solving the Substring Problem

First idea: Build a keyword tree of all substrings of S

No: takes too much time ($\Omega(m^2)$)

Second idea: It is easy to find prefixes of strings in a keyword tree. Each substring $S[i \ldots j]$ is a prefix of the suffix $S[i \ldots m]$ of S

\leadsto create a keyword tree of the m non-empty suffixes of S

The rest is just refinement . . .

(yet rather complicated to get the construction time down to linear!)
Definition of a Suffix Tree

A suffix tree \mathcal{T} for $S[1 \ldots m]$ is a rooted tree with ...

- m leaves numbered $1, \ldots, m$
- at least two children for each internal node (with the root as a possible exception)
- each edge labeled by a nonempty substring of S
- no two edges out of a node beginning with the same character

Again, $\mathcal{L}(v)$ denotes the label of a node v, i.e., the concatenation of edge labels on the path from the root to v

Key feature:

- $\mathcal{L}(i) = S[i \ldots m]$ for each leaf $i = 1, \ldots, m$ of \mathcal{T}
Example of a Suffix Tree

The suffix tree for string $x a b x a c$:

$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$

Does a suffix tree always exist?
Ensuring the Existence of a Suffix Tree

Not necessarily:

If some suffix w appears as a prefix of some other one, the path labeled by w does not lead to a leaf.

To avoid this, assume that S has a “termination character” $\$$ that occurs only at the end of S (or insert one, if needed).

\Rightarrow no suffix can appear as a prefix of any other

\Rightarrow suffixes label complete paths leading to the leaves
Applying Suffix Trees to Matching

Suffix trees can be used to solve exact matching:

1. Construct the suffix tree T for text $T[1 \ldots m]$;
 (We’ll discuss later how to do this in $O(m)$ time)

2. Match characters of P along a path from the root
 (a) If P can be fully matched\(^\dagger\), let z be the number of leaves below the path labeled by P. Each of these is a start of an occurrence of P, and they can be collected in time $O(z)$ (Exercise)
 (b) If doesn’t match completely, P doesn’t occur in T

Total time: $O(m + n + z)$

\(^\dagger\) P may end at the middle of an edge
Naive Construction of Suffix Trees

Start with a root and a leaf numbered 1, connected by an edge labeled S.

Enter suffixes $S[2 \ldots m]$, $S[3 \ldots m]$, \ldots, $S[m]$ into the tree as follows:

To insert $K_i = S[i \ldots m]$, follow the path from the root matching characters of K_i until the first mismatch at character $K_i[j]$ (which is bound to happen)

(a) If the matching cannot continue from a node, denote that node by w

(b) Otherwise the mismatch occurs at the middle of an edge, which has to be split
Naive Construction of Suffix Trees (2)

If the mismatch occurs at the middle of an edge \(e = (u, v) \), let the label of that edge be \(a_1 \ldots a_l \)

If the mismatch occurred at character \(a_k \), then create a new node \(w \), and replace \(e \) by edges \((u, w) \) and \((w, v) \) labeled by \(a_1 \ldots a_{k-1} \) and \(a_k \ldots a_l \)

Finally, in both cases (a) and (b), create a new leaf numbered \(i \), and connect \(w \) to it by an edge labeled with \(K_i[j \ldots |K_i|] \)
Example of the Naive Construction

Consider building the suffix tree for the string S:

```
1  2  3  4  5  6
x  a  b  x  a  c
```

Start:

```
● xabxac —— 1
```

After inserting the second and the third suffix:

```
● xabxac —— 1
  ● abxac —— 2
    ● bxac —— 3
```
Example of the Naive Construction

(2)

Entering \(S[4 \ldots 6] = xac \) causes the first edge to split:

Same happens for the second edge when \(S[5 \ldots 6] = ac \) is entered
After entering suffixes $S[5 \ldots 6] = ac$ and $S[6] = c$ the suffix tree is complete:
Complexity of the Naive Construction

Each suffix $S[i \ldots m]$ is entered in the tree in time
$\Theta(|S[i \ldots m]|) \rightarrow$ total time is $\Theta(\sum_{i=2}^{m+1} i) = \Theta(m^2)$

Observations: Number of edges in a suffix tree T is at most $2m - 1 \sim$ the size of T is $O(m)$ (Exercise)

On the other hand, the total length of edge labels can be $\Theta(m^2)$ (Exercise)

As a simple example consider the suffix tree of $abc \ldots xyz$, whose total length of edge labels is $\sum_{l=1}^{26} l = 26 \times 27/2$

For linear time we need a compact representation of edge labels
Compact Representation

Each edge is labeled by a non-empty substring $S[i \ldots j]$

Compression: Represent label $S[i \ldots j]$ by two indices i and j to the string S

\leadsto each edge takes only constant space, and thus $O(m)$ space suffices for the entire suffix tree of $S[1 \ldots m]$
Example of Compact Representation

The suffix tree for a string with compacted edge labels

```
1 2 3 4 5 6
x a b x a c
```
Short History of Suffix Trees

- Weiner, 1973: the first linear-time construction
- McCreight, 1976: a more space-efficient linear-time method
- Ukkonen, 1995: A simpler linear-time construction, with all advantages of the previous, and more memory-efficient in practice

Next: Ukkonen’s linear-time construction (which is rather complex)