Biosequence Algorithms, Spring 2005
Lecture 10: Approximate Matching, Local Alignments, and Gaps

Pekka Kilpeläinen

University of Kuopio
Department of Computer Science
Important generalization of exact matching: locate similar occurrences of a pattern (not just exact copies)

A substring $T'$ of $T$ is an **approximate occurrence** of $P$ iff the similarity of $P$ and $T'$ is at least $\delta$ (for a given $\delta$)

Approximate occurrences of pattern $P$ in text $T$ can be computed as a slight variation of (global) alignment:

Apply the previous recurrences (with $P$ in place of $S_1$, and $T$ in place of $S_2$), but change the base condition for row 0 to

$$V(0, j) = 0 \text{ for all } j$$

$\sim \text{“}T[1], T[2], \ldots, T[j] \text{ are aligned with spaces for free”}$

$\sim \text{“}it \text{ doesn’t cost (or pay) to slide } P \text{ along } T”$
Finding Approximate Occurrences

Table $V(i, j)$ can be filled, as before, in time $\Theta(nm)$

**Theorem 11.6.2** An approximate occurrence of $P[1 \ldots n]$ ends at position $j$ of $T$ if and only if

$$V(n, j) \geq \delta$$ (1)

If (1) holds, there is a path of backpointers btw cells $(n, j), \ldots, (1, k), (0, k')$ such that $T[k \ldots j]$ is an approximate occurrence of $P$.

**Proof** (idea) Show, by induction on the length of the path, that $V(i, j)$ is the similarity of $P[1 \ldots i]$ and $T[k \ldots j]$.  

\[\Box\]
Finding Approximate Occurrences (2)

There can be multiple approximate occurrences of $P$ (of different length) ending at the same position $j$ of $T$.

The *shortest* ones can be located as follows:

1. Find each column $j$ on row $n$ where $V(n, j) \geq \delta$

2. For each of them, trace backpointers from $(n, j)$ to row 0, preferring pointers ‘$\uparrow$’ over ‘$\searrow$’, and ‘$\searrow$’ over ‘$\leftarrow$’
Local Alignment

Sometimes a pair of *local regions* of maximal similarity is more interesting than the *global* similarity of the strings.

**Local alignment** (or **local similarity**) problem (*paikallinen rinnastus*):

Given strings $S_1$ and $S_2$, find *substrings* $\alpha$ of $S_1$ and $\beta$ of $S_2$ of *maximal similarity*.

**NB:** Substrings of *minimal edit distance* would be exactly matching substrings (possibly of 1 char only);

Maximizing *similarity* is thus more useful for finding longer areas of high similarity.
Local vs. Global Alignment?

Global alignment is often used to compare members of the same protein family

- often of similar length (e.g., globins)
- for trying to infer evolutionary history

Local alignment considered more useful

- for comparing anonymous DNA sequences (where only some sections may be related)
- for comparing proteins from different families, to search for common subunits
The local alignment problem btw strings $S_1[1 \ldots n]$ and $S_2[1 \ldots m]$ can be solved in $O(nm)$ time (T. Smith & M. Waterman, 1981)

- even though there are $\Theta(n^2m^2)$ possible pairs of substrings!

Helpful assumption: the similarity of two empty strings is 0

Consider first a restricted version of the problem:

Given indices $i \leq n$ and $j \leq m$, the local suffix alignment problem is to find a suffix $\alpha$ of $S_1[1 \ldots i]$ and a suffix $\beta$ of $S_2[1 \ldots j]$ of maximal similarity (denoted by $v(i, j)$)
Example of Local Suffix Alignments

**Example:** Let the scores be \( s(x, y) = 2 \) when \( x = y \neq _\_ \), and \( s(x, y) = -1 \) when \( x \neq y \) (for any \( x, y \in \Sigma \cup \{ \_ \} \))

Consider strings

\[
\begin{align*}
1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6 & \quad 7 \\
S_1 : \quad & a & \quad b & \quad c & \quad f & \quad d & \quad e & \quad f \\
S_2 : \quad & f & \quad f & \quad f & \quad c & \quad d & \quad e \\
\end{align*}
\]

Then

\[
\begin{align*}
v(3, 4) &= 2 \quad (\alpha = \beta = c) \\
v(4, 5) &= 1 \quad (\alpha = cf, \beta = cd) \\
v(5, 5) &= 3 \quad (\alpha' = f_\_d, \beta = fcd)
\end{align*}
\]
Denote the value of an optimal local alignment by $v^*$

**Theorem 11.7.1** $v^* = \max\{v(i, j) \mid i \leq n, j \leq m\}$

**Proof.**

(1) $v^* \geq \max\{v(i, j) \mid i \leq n, j \leq m\}$ (local suffix alignment is a special case of local alignments)

(2) Let $v^*$ be the similarity of substrings $\alpha$ and $\beta$ ending at positions $i^*$ and $j^*$, resp. $\rightarrow \alpha$ and $\beta$ are suffixes of $S_1[1\ldots i^*]$ and $S_2[1\ldots j^*]$, resp.

$\rightarrow v^* \leq v(i^*, j^*) \leq \max\{v(i, j) \mid i \leq n, j \leq m\}$

(1) & (2) imply the claim
Corollary 11.7.2 If \( v(i^*, j^*) = \max\{v(i, j) \mid i \leq n, j \leq m\} \), then suffixes \( \alpha \) of \( S_1[1 \ldots i^*] \) and \( \beta \) of \( S_2[1 \ldots j^*] \) whose similarity is \( v(i^*, j^*) \) form a solution to the local alignment problem.

How to find these \( i^* \) and \( j^* \), and \( \alpha \) and \( \beta \)?

A: By dynamic programming
Recurrences for Local Suffix Alignment

**Base cases:** $v(i, 0) = v(0, j) = 0$
(as the score of an empty suffix, assuming $s(x, \_ \_) \leq 0$)

**Inductive case** ($j, i > 0$):

How can suffixes $\alpha$ of $S_1[1 \ldots i]$ and $\beta$ of $S_2[1 \ldots j]$ be aligned optimally? Different possibilities:

1. they could be empty $\leadsto$ score $v(i, j) = 0$
2. $S_1[i]$ against $S_2[j] \leadsto$ score $v(i - 1, j - 1) + s(S_1[i], S_2[j])$
3. $S_1[i]$ against a space $\leadsto$ score $v(i - 1, j) + s(S_1[i], \_ \_)$
4. $S_2[j]$ against a space $\leadsto$ score $v(i, j - 1) + s(\_ \_, S_2[j])$

The optimum for $v(i, j)$ is obtained by selecting the maximum of the above possibilities
Local Alignment Recurrences

\[ v(i, j) = \max \begin{cases} 0 \\ v(i - 1, j - 1) + s(S_1[i], S_2[j]) \\ v(i - 1, j) + s(S_1[i], \_ ) \\ v(i, j - 1) + s(\_, S_2[j]) \end{cases} \]

A table of \( v(i, j) \) values, with backpointers, can be computed applying the recurrences, in a similar way as before.
Complexity of Local Alignment

Maximum value $v^*$ is found by going through all cells of the table, say, in cell $(i^*, j^*)$. Substrings $\alpha$ and $\beta$ with similarity $v^*$ are then found by tracing backpointers from cell $(i^*, j^*)$ along a path $(i^*, j^*), \ldots, (i', j'), (i_0, j_0)$, where $v(i_0, j_0) = 0$

Then $\alpha = S_1[i' \ldots i^*]$ and $\beta = S_2[j' \ldots j^*]$

**Theorem 11.7.4** Local alignment between strings $S_1[1 \ldots n]$ and $S_2[1 \ldots m]$ can be computed in time $O(nm)$

**Proof.** Table $v(i, j)$ is filled in constant time per cell.

The cell $(i^*, j^*)$ with an optimal score is found in time $O(nm)$, and the traceback for $(i', j')$ requires at most $n + m$ steps. \qed
Remarks

Instead of a single highest-scoring pair \((\alpha, \beta)\) of substrings, a number of similar substrings, say with similarity above a given threshold, can be found in a similar manner.

Suitable scoring schemes are needed for meaningful local alignments:

1. Scoring matches with 1 and mismatches/spaces with 0 locates *longest common subsequences*.
2. Penalizing mismatches/spaces with large negative values yields *longest common substrings*.
3. Scoring matrices with a positive average score tend to prefer long alignments, which approach *global* alignments.
Alignments with Gaps

A gap (aukko) is a maximal consecutive run of spaces in a single string participating in an alignment.

Alignments with gaps correspond better to the biological phenomena that we try to model (i.e., likelihood of mutational events needed to transform one sequence into the other):

- a deletion or an insertion of an entire (DNA) substring (\sim gap) often occurs as a single mutational event.
- gaps are sometimes key features for inferring evolutionary history of a set of strings.
How to Score the Gaps?

Different possibilities to score the gaps of an alignment:

- constant, affine, convex, and arbitrary

A **constant** gap weight is the simplest:

Set \( s(_, x) = s(x, _) = 0 \) for every char \( x \), and score each gap by constant \( W_g \) (independent of gap length)

\[ s(S_1', S_2') \]

\[ \sum_{i=1}^{l} (s(S_1'[i], S_2'[i])) - G \times W_g, \]

where \( S_1' \) and \( S_2' \) are the strings padded with spaces for the alignment, and \( G \) is the total number of gaps
Affine Gap Weights

Generalization: Treat $W_g$ as a *gap initiation weight*, and add a *gap extension weight* $W_s$ for each space.

A gap of length $l$ adds cost $W_g + W_s \times l$ to the score (which is an “affine” function).

**Affine gap weights** are probably the most commonly used ones in molecular biology.

- Default weights of FASTA are $W_g = 10$ and $W_s = 2$.

Optimal alignments under this model maximize

$$\sum_{i=1}^{l} (s(S'_1[i], S'_2[i]) - G \times W_g$$

with scores $s(_, x) = s(x, _) = -W_s$ for each $x$. 
Convex Gap Weights

Empirical data suggests gap penalties of the form 
\[ W_g + W_s \times \log l \] for gaps of length \( l \)

- example of convex \( (ylöspäin) kupera \) gap weights, where additional spaces cost less than earlier ones

Finally, arbitrary gap weights are unrestricted functions \( w(l) \) of the length of the gap
Optimal alignments can be found in the following times:

1. $O(nm^2 + n^2m)$ for arbitrary gap weights
2. $O(nm \log m)$ for convex gap weights
3. $O(nm)$ for affine and constant gap weights

We’ll discuss the first and the third case in detail

(The algorithm for convex gap weights is more complicated)
(Needleman & Wunsch, 1970)

Consider an optimal alignment between the prefixes $S_1[1 \ldots i]$ of $S_1$ and $S_2[1 \ldots j]$ of $S_2$; It can either

- align $S_1[i]$ to the left of $S_2[j]$ (case $E$)
- align $S_2[j]$ to the left of $S_1[i]$, or (case $F$)
- align $S_1[i]$ against $S_2[j]$ (case $G$)

Let $E_{ij}$ be the maximum value of alignments of type $E$, and respectively $F_{ij}$ and $G_{ij}$ the maximum values of alignments of type $F$ and $G$.

The maximum value $V_{ij}$ of any alignment between $S_1[1 \ldots i]$ and $S_2[1 \ldots j]$ is then $\max\{E_{ij}, F_{ij}, G_{ij}\}$
Recurrences for Arbitrary Gap Weights

Let \( w(l) \) be the weight of a gap of length \( l \).

**Base cases:**

\[
V_{i,0} = -w(i) \\
V_{0,j} = -w(j)
\]

(as the cost of aligning a non-empty string with a gap)

Optimums of the different cases for \( i, j > 0 \) are as follows:

\[
E_{ij} = \max \{ V_{i,k} - w(j - k) \mid 0 \leq k < j \} \\
F_{ij} = \max \{ V_{k,j} - w(i - k) \mid 0 \leq k < i \} \\
G_{ij} = V_{i-1,j-1} + s(\text{S}_1[i], \text{S}_2[j])
\]
Complexity

The optimal alignment value $V_{nm}$ can be computed by filling an $(n + 1) \times (m + 1)$ table $V_{ij}$ according to the recurrences

**Theorem 11.8.1** The similarity of $S_1[1 \ldots n]$ and $S_2[1 \ldots m]$ under arbitrary gap weights can be computed in time $O(nm^2 + n^2m)$

**Proof.** Each $E_{ij}$ computed by examining $j$ cells of table $V$ 
$\sum_{j=1}^{m} j = O(m^2)$ for a single row $\Rightarrow O(nm^2)$ for all $E_{ij}$

Similarly, each $F_{ij}$ is computed from $i$ cells of table $V$ 
$\Rightarrow O(mn^2)$ time to compute all values $F_{ij}$

In addition to that, each of $V_{ij}$ and $G_{ij}$ are assigned in constant time
Optimal alignments with *affine* gap weights can be computed more efficiently

The reason is that the cost of extending a gap of length $l$ by one space is now predictable:

$$w(l + 1) = W_g + W_s \times (l + 1) = w(l) + W_s$$

All that matters is whether a new gap is started (with initiation weight $W_g$) or whether it has already begun.

This insight is formalized in the recurrences for cases $E$ and $F$ (using variables $V_{ij}$, $E_{ij}$, $F_{ij}$ and $G_{ij}$ in similar roles as before).
Recurrences for Affine Gap Weights

Base cases:

\[ V_{0,0} = 0 \]
\[ V_{i,0} = E_{i,0} = -W_g - iW_s \]
\[ V_{0,j} = F_{0,j} = -W_g - jW_s \]

(start a gap and make it \( i \) or \( j \) spaces long)

For \( i, j > 0 \), \( V_{ij} = \max\{E_{ij}, F_{ij}, G_{ij}\} \), as above

Case \( G \) of aligning \( S_1[i] \) with \( S_2[j] \) also remains the same:

\[ G_{ij} = V_{i-1,j-1} + s(S_1[i], S_2[j]) \]

What about cases \( E \) and \( F \) (either string ends with a gap)?
Affine Gap Weight Recurrences (2)

Consider case $E$, where $S_1[1 \ldots i]$ ends with a gap when aligned with $S_2[1 \ldots j]$

(a) If the gap begins in $S_1$ opposite $S_2[j]$, 
$$E_{ij} = V_{i,j-1} - W_g - W_s$$

(b) If the gap has begun to the left of $S_2[j]$, charge it for the additional space only $\Rightarrow E_{ij} = E_{i,j-1} - W_s$

Whichever the case, $E_{ij}$ is by definition the maximum:

$$E_{ij} = \max\{E_{i,j-1}, V_{i,j-1} - W_g\} - W_s$$

With similar reasoning

$$F_{ij} = \max\{F_{i-1,j}, V_{i-1,j} - W_g\} - W_s$$
As before, the optimal alignment value is found in cell $V_{n,m}$

**Theorem 11.8.2** The similarity of strings $S_1[1\ldots n]$ and $S_2[1\ldots m]$ with affine gap weights can be computed in time $O(nm)$

**Proof.** The number of values $V_{ij}$, $E_{ij}$, $F_{ij}$, and $G_{ij}$ is $O(nm)$, and each of them is computed from a constant number of previously computed values.

**NB:** The above method computes also similarity with *constant* gap weights, as a special case $W_s = 0$
The *space* required by the tables is more often a problem than the time of computation.

For example, $30,000^2 \text{ B} \approx 1 \text{ GB}$ is much, but $30,000^2 \text{ operations with } 1/\mu s \rightsquigarrow \sim 1000 \text{ s}$

It is easy to compute the *score* of an optimal alignment in linear space $O(\min\{n,m\})$, by maintaining only a few columns or rows (→ exercise).

Hirschberg (1977) has developed an ingenious divide-and-conquer method that also *constructs an optimal alignment* using linear space only (and $O(mn)$ time).