1. Using asymptotic notation, derive upper and lower bounds for the number of different
 (a) prefixes and suffixes
 (b) substrings, and
 (c) subsequences
 of a string $S = s_1 \ldots s_n$.

2. (Gusfield, Ex. 1.2) A circular string of length n is a string in which character n is considered to precede character 1. (Bacterial and mitochondrial DNA is typically circular.) Design a linear-time algorithm to determine whether a linear string α is a substring of a circular string β. (Notice that the length of the substring can be larger than the length of β. For example, the linear string CATCATCA is a substring of the circular string ATC. Use the existence of a linear-time exact matching algorithm to solve this problem.)

3. Show the character comparisons performed by
 (a) the naive method and
 (b) the Z algorithm
 to search for occurrences of the pattern “AATAAT” in the target

 ACAATAATAAT

4. (Gusfield, Ex. 1.5) If the Z algorithm finds that $Z_2 = q > 0$, all the values $Z_3, \ldots, Z_{q+1}, Z_{q+2}$ can then be obtained immediately without additional character comparisons and without executing the main body of Algorithm Z. Elaborate and justify the details of this claim.

5. (Gusfield, Ex. 1.3) **Suffix-prefix matching.** Give an algorithm that takes two strings α and β, of lengths n and m, and finds the longest suffix of α that exactly matches a prefix of β. The algorithm should run in $O(n + m)$ time.
 (Hint: Z algorithm.)