Boyer-Moore: Main ideas

Longer shifts result from:
1. matching \(P \) against \(T \) right-to-left, in order \(P[n], P[n-1], \ldots \)
2. “bad character shift rule”
 - to avoid repeating unsuccessful comparisons against a mismatched target character
3. “good suffix shift rule”
 - to align only matching pattern characters against target characters already successfully matched

Either rule alone works, but they’re more effective together.

Bad Character Rule Formally

For each character \(x \in \Sigma \), let
\[
R(x) = \max \{ i < n \mid P[i] = x \} \cup \{0\}
\]
\(R(x) \): right-most occurrence of \(x \) in \(P[1 \ldots n-1] \), or 0

Easy to compute in time \(\Theta(|\Sigma| + |P|) \):
- for each \(x \in \Sigma \) do \(R(x) := 0 \);
- for \(i := 1 \) to \(n-1 \) do
 - \(R(P[i]) := i \);

Bad Character Shift

When \(P[i] \neq T[h] \) for \(i = x \), shift \(P \) to the right by \(\max\{1, i - R(x)\} \). This means:
- if the right-most occurrence of \(x \) in \(P[1 \ldots n-1] \) is at \(j < i \), chars \(P[j] \) and \(T[h] \) get aligned
- if the right-most occurrence of \(x \) in \(P[1 \ldots n-1] \) is at \(j > i \), the pattern is shifted to the right by one
- if \(x \) doesn’t occur in \(P[1 \ldots n-1] \), shift = 1, and the pattern is next aligned with \(T[h+1 \ldots h+n] \)

Strong) Good Suffix Rule

Bad character rule is effective, e.g., in searching natural language text (because mismatches are probable)
- Horspool’s version of BM applies the bad-char rule only

With a small alphabet, occurrences of \(x \) at \(P[j] \) for \(i < j < n \) are probable (\(\rightarrow i - R(x) < 0 \); doesn’t help)
- **Extended** bad-char rule helps by recording for each \(x \in \Sigma \) and each \(i \) the right-most occurrence of \(x \) in \(P[i \ldots i-1] \)

Additional benefit can be obtained from considering the **successfully matched suffix of \(P \)**

We concentrate to so called strong good suffix rule, which is more powerful than the original BM suffix rule.
Good Suffix Rule Formally

Suppose that \(P[i \ldots n] \) has been successfully matched against \(T \).

Case 1: If \(P[i-1] \) is a mismatch and \(P \) contains another copy of \(P[i \ldots n] \) which is not preceded by char \(P[i-1] \), shift \(P \) s.t. the closest such copy is aligned with the substring already matched by \(P[i \ldots n] \).

(See the previous slide for an example)

What if no preceding copy of \(P[i \ldots n] \) exists?

\(~\Rightarrow~\) Case 2

Good Suffix Rule: Case 2

Consider a mismatch at \(P[n-5] \):

\[
\begin{array}{c|c|c|c|c}
\hline
i & 1 & 2 & 3 & 4 \\
\hline
T & maitava talomaisena onalomainiuluun & maitava talomaisena onalomainiuluun & maitava talomaisena onalomainiuluun & maitava talomaisena onalomainiuluun \\
\hline
P & maisemaomalona & maisemaomalona & maisemaomalona & maisemaomalona \\
\hline
\end{array}
\]

No preceding occurrence of “aloma” in \(P \), but a potential occurrence of \(P \) begins at \(T[13] = “ma” \)

\[i = 1 \]

\[n = 3 \]

\[T: maitava talomaisena onalomainiuluun \]

\[P: maisemaomalona \]

Case 2

Assume that \(P[i \ldots n] \) has been successfully matched against substring \(r \) of the target.

\[i = 2 \ldots n+1 \]

Define \(L'(i) \) as the largest position of \(P \) that satisfies the following:

\[P[i',L'(i)] = P[i,n] \quad \text{thus } i' = L'(i) - n + i \]

\[i' > 0 \]

\text{if no such copy of suffix } P[i \ldots n] \text{ occurs in } P, \text{ let } L'(i) = 0

NB 1: If \(L'(i) > 0 \), then \(P[i',L'(i)] \) is the closest copy of “good suffix” \(P[i \ldots n] \), and gives the shift \(n - L'(i) \)

NB 2: Since \(P[n+1 \ldots n+1] = \epsilon \), \(L(n+1) \) is the right-most position \(j \) s.t. \(P[j] \neq P[n] \) (or \(0 \) if all chars are equal).

Computing the \(L' \) Values (1)

Define \(N_i(P) \) to be the length of the longest common suffix of \(P[1 \ldots j] \) and \(P \) (\(\Rightarrow 0 \leq N_i(P) \leq j \))

Example:

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
\hline
i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\hline
P & 12345678901234 & 12345678901234 & 12345678901234 & 12345678901234 & 12345678901234 & 12345678901234 & 12345678901234 & 12345678901234 \\
N_i(P) & N_i(P) = 0 \\
\hline
\end{array}
\]

Computing the \(L' \) Values (2)

Remember: \(Z \sim \text{longest repeat of prefix} \).

Now \(N_j \sim \text{longest common suffix} \) are reverses of \(Z \):

\[N_j(P) = Z_{n-j+1}(P') \]

where \(P' \) is the reverse of \(P \)

Example:

\[
\begin{array}{c|c|c}
\hline
j & 1 & 2 & 3 & 4 \\
\hline
P & 1234567890123456 & 1234567890123456 & 1234567890123456 & 1234567890123456 \\
N_i(P) & N_1(1234567890123456) = 1234567890123456 & N_2(1234567890123456) = 1234567890123456 & N_3(1234567890123456) = 1234567890123456 & N_4(1234567890123456) = 1234567890123456 \\
\hline
\end{array}
\]

\(~\Rightarrow~\) the \(N_j \) values can be computed in time \(\Theta(|P|) \) by applying the \(Z \) algorithm to the reversal of \(P \).

Computing the \(L' \) Values (3)

Theorem 2.2.2: If \(L(i) > 0 \), then \(L'(i) = \max \{ j < n \mid N_j(P) = |P[i \ldots n]| \} \).

Proof. Such \(j \) is the right endpoint of the closest copy of \(P[i \ldots n] \) which is not preceded by \(P[i-1] \).

\(~\Rightarrow~\) the \(L'(i) \) values can be computed in \(\Theta(|P|) \) time by locating the largest \(j \) s.t. \(N_j(P) = |P[i \ldots n]| = n - i + 1 \)

\[\Rightarrow \text{ such } j \text{ is } L'(i) \text{ for } i = n - N_j(P) + 1; \]

\[i = n + 1 \Rightarrow L'(i) = 0 \]

\[i = 1 \Rightarrow L'(n - N_j(P) + 1) = j; \]
How to compute the smallest shift that aligns a matching prefix of P with a suffix of the successfully matched substring t of $T (= P[1 \ldots n])$?

For $i \geq 2$, let $l(i)$ be the maximum length such that $P[1 \ldots l(i)]$ is equal to a suffix of $P[i \ldots n]$

Example: For $P = P[1 .. 5] = \text{“ababa”}$,
- $l(6) = 0$ ($\leftarrow P[6 .. 5] = \epsilon$),
- $l(5) = l(4) = 1$ (\text{“a”}), and
- $l(3) = l(2) = 3$ (\text{“aba”})

Critical Points:
- For $P[6 - 1]$ is a mismatch (after matching $P[1 \ldots n]$ successfully)
 - (Case 1) if $L(i) > 0$, shift the pattern to the right by $n - L(i)$ positions
 - (Case 2) if $L(i) = 0$, shift the pattern to the right by $n - l(i)$ positions

Note: If already $P[i]$ fails to match, $i = n + 1$, which also gives correct shifts.

When an occurrence of P has been found, shift P to the right by $n - l(2)$ positions. Why? To align a prefix of P with the longest matching proper suffix of the occurrence.

Final Remarks

The presented rules avoid performing unnecessary comparisons that would fail.

They can be shown to lead to linear-time behavior, but only if P does not occur in T. Otherwise the worst-case complexity is still $\Theta(nm)$.

A simple modification ("Galil rule"; Gusfield, Sect. 3.2.2) leads to a provably linear worst-case time.

On natural language texts the running time is typically sub-linear, and normally BM searches for longer patterns faster.