Principles of Database Management Systems

5: Query Processing

Pekka Kilpeläinen
(partially based on Stanford CS245 slide originals by Hector Garcia-Molina, Jeff Ullman and Jennifer Widom)

Query Processing

• How does the query processor execute queries?
 Query \rightarrow \text{Query Plan}
 - SQL - expression of methods to realize the query

Focus: Relational System

Example

SELECT B, D
FROM R, S
WHERE R.C = S.C AND R.A = "c" AND S.E = 2

Answer

R A B C S C D E
a 1 10 10 x 2
b 1 20 20 y 2
c 2 10 30 z 2
d 2 35 40 x 1
e 3 45 50 y 3

RxS

• How to execute query?
 - Do Cartesian product RxS
 - Select tuples
 - Do projection

Basic idea

Bingo!
Got one...
Problem

• A Cartesian product RxS may be LARGE
 - need to create and examine n x m tuples, where n = |R| and m = |S|
 - For example, n = m = 1000 => 10^6 records
-- need more efficient evaluation methods

Overview of Query Execution

- SQL query
- parse tree
- logical query plan
- apply laws
- "improved" l.q.p
- estimate result sizes
- l.q.p. + sizes
- statistics
- estimate costs
- pick best
- execute

{P1,P2,...}

Relational Algebra - used to describe logical plans

Ex: Original logical query plan

\[
\text{SELECT B,D} \rightarrow \Pi_{B,D} \\
\text{WHERE} \rightarrow \sigma_{R.A = "c" \land S.E=2 \land R.C=S.C} \\
\text{FROM} \rightarrow R \bowtie S
\]

OR: \[\Pi_{B,D} [\sigma_{R.A = "c" \land S.E=2 \land R.C=S.C} (R \bowtie S)] \]

Improved logical query plan:

\[
\begin{align*}
\text{Plan II} & \rightarrow \Pi_{B,D} \\
\sigma_{R.A = "c"} & \leftarrow R \\
\sigma_{S.E=2} & \leftarrow S \\
R \bowtie S & \rightarrow \text{natural join}
\end{align*}
\]

Physical Query Plan:

Detailed description to execute the query:

- algorithms to implement operations; order of execution steps; how relations are accessed; For example:
 1. Use R.A index to select tuples of R with R.A = "c"
 2. For each R.C value found, use the index on S.C to find matching tuples
 3. Eliminate S tuples with S.E ≠ 2
 4. Join matching R.S tuples, project on attributes B and D, and place in result
Outline (Chapter 6)
- (Relational algebra for queries
 - representation for logical query plans
 - operations that we need to support)
- Algorithms to implement relational operations
 - efficiency estimates
 (for selecting the most appropriate)
- We concentrate on algorithms for **selections** and **joins**

Physical operators
- Principal methods for executing
 operations of relational algebra
- Building blocks of physical query plans
- Major strategies
 - scanning tables
 - sorting, indexing, hashing

Cost Estimates
- Estimate only # of disk I/O operations
 - dominating efficiency factor
 • exception: communication of data over network
- Simplifying assumptions
 - **ignore** the cost of **writing the result**
 • result blocks often passed in memory to further
 operations ("pipelining")
 - I/O happens **one block at a time**
 (e.g., ignore usage of cylinder sized blocks)

Parameters for Estimation
- **M**: # of available main memory buffers
 (estimate)
- Kept as statistics for each relation R:
 - **T(R)**: # of tuples in R
 - **B(R)**: # of blocks to hold all tuples of R
 - **V(R, A)**: # of distinct values for attribute R.A
 = **SELECT COUNT (DISTINCT A) FROM R**

Cost of Scanning a Relation
- Normally assume relation R to be **clustered**, that is, stored in blocks exclusively (or predominantly) used for representing R
- For example, consider a clustered-file organization of relations
 `DEPT(Name, ...)` and
 `EMP(Name, Dname, ...)`

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>10</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>e</td>
<td>3</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1d</td>
<td>2</td>
</tr>
<tr>
<td>2c</td>
<td>y 2</td>
</tr>
<tr>
<td>3z</td>
<td>2</td>
</tr>
<tr>
<td>4x</td>
<td>1</td>
</tr>
<tr>
<td>5y</td>
<td>3</td>
</tr>
</tbody>
</table>
• Relation EMP might be considered clustered, relation DEPT probably not
• For a clustered relation R, sufficient to read (approx.) B(R) blocks for a full scan
• If relation R not clustered, most tuples probably in different blocks => input cost approx. T(R)

Classification of Physical Operators (1)
• By method:
 - sort-based
 • process relation(s) in the sorted order
 - hash-based
 • process relation(s) partitioned in hash buckets
 - index-based
 • apply existing indexes
 • especially useful for selections

Classification of Physical Operators (2)
• By applicability and cost:
 - one-pass methods
 • if at least one argument relation fits in main memory
 - two-pass methods
 • if memory not sufficient for one-pass
 • process relations twice, storing intermediate results on disk
 - multi-pass
 • generalization of two-pass for HUGE relations

Implementing Selection
• How to evaluate \(\sigma_C(R) \)?
 - Sufficient to examine one tuple at a time
 - Easy to evaluate in one pass:
 • Read each block of R using one input buffer
 • Output records that satisfy condition C
 - If R clustered, cost = B(R); else T(R)
• Projection \(\pi_A(R) \) in a similar manner

Index-Based Selection
• Consider selection \(\sigma_{A='c'}(R) \)
• If there is an index on R.A, we can locate tuples t with t.A='c' directly
• What is the cost?
 - How many tuples are selected?
 • estimate: \(T(R)/V(R,A) \) on the average
 • if A is a primary key, \(V(R,A) = T(R) \) => 1 disk I/O

Index-Based Selection (cont.)
• Index is clustering if tuples with A='c' are stored in consecutive blocks (for any 'c')
Selection using a clustering index

- We estimate a fraction $T(R)/V(R,A)$ of all R tuples to satisfy $A=c$. Apply same estimate to data blocks accessible through a clustering index $\Rightarrow \frac{B(R)}{V(R,A)}$ is an estimate for the number of block accesses

- Further simplifications: Ignore, e.g.,
 - cost of reading the (few) index blocks
 - unfilled room left intentionally in blocks
 - ...

Selection Example

Consider $\sigma_{A=0}(R)$ when $T(R)=20,000$, $B(R)=1000$, and there's an index on $R.A$

- simple scan of R
 - if R not clustered: cost = $T(R) = 20,000$
 - if R clustered: cost = $B(R) = 1000$
- if $V(R,A)=100$ and index is ...
 - not clustering \Rightarrow cost = $T(R)/V(R,A) = 200$
 - clustering \Rightarrow cost = $B(R)/V(R,A)= 10$
- if $V(R,A)=20,000$ (i.e., A is key) \Rightarrow cost = 1

Time
- disk I/O
 - 5 ms
 - 5 min
 - 15 sec
 - 3 sec
 - 0.15 sec
 - 15 ms

Processing of Joins

- Consider natural join $R(X,Y) \bowtie S(Y,Z)$
 - general joins rather similarly, possibly with additional selections (for complex join conditions)

- Assumptions:
 - $Y =$ join attributes common to R and S
 - S is the smaller of relations: $B(S) = B(R)$

One-Pass Join

- Requirement: $B(S) < M$, i.e., S fits in memory
- Read entire S in memory (using one buffer);
 Build a dictionary (balanced tree, hash table) using join attributes of tuples as search key
- Read each block of R (using one buffer);
 For each tuple t, find matching tuples from the dictionary, and output their join
- I/O cost: $B(S) + B(R)$

What If Memory Insufficient?

- Basic join strategy:
 - "nested-loop" join
 - "1+n pass" operation:
 - one relation read once, the other repeatedly
 - no memory limitations
 - can be used for relations of any size

- Nested-loop (conceptually)

 for each tuple $s \in S$ do
 for each tuple $r \in R$ do
 if $r.Y = s.Y$ then
 output join of r and s;

- Cost (like for Cartesian product):
 $T(S) \ast (1 + T(R)) = T(S) + T(S)T(R)$
• If R and S clustered, can apply block-based nested-loop join:

```plaintext
for each chunk of M-1 blocks of S do
  Read blocks in memory;
  Insert tuples in a dictionary using the join attributes;
  for each block b of R do
    Read b in memory;
    for each tuple r in b do
      Find matching tuples from the dictionary;
      output their join with r;
```

Cost of Block-Based Nested-Loop Join

• Consider R(X,Y) S(Y,Z) when B(R)=1000, B(S)=500, and M = 101
 - Use 100 buffers for loading S
 -> 500/100 = 5 chunks
 - Total I/O cost = 5 x (100 + 1000) = 5500 blocks
• R as the outer-loop relation -> I/O cost 6000
 - in general, using the smaller relation in the outer loop gives an advantage of B(R) - B(S) operations

Analysis of Nested-Loop join

• B(S)/(M-1) outer-loop iterations;
 Each reads M-1 + B(R) blocks
 -> total cost = B(S) + B(S)B(R)/(M-1), or approx. B(S)B(R)/M blocks
• Not the best method, but sometimes the only choice
• Next: More efficient join algorithms

Sort-Based Two-Pass Join

• Idea: Joining relations R and S on attribute Y is rather easy, if the relations are sorted using Y
 - IF not too many tuples join for any value of the join attributes. (E.g. if π_Y(R) = π_Y(S) = {y}, all tuples match, and we may need to resort to nested-loop join)
 - If relations not sorted already, they have to be sorted (with two-phase multi-way merge sort, since they do not fit in memory)

Sort-Based Two-Pass Join

1. Sort R with join attributes Y as the sort key;
2. Do the same for relation S;
3. Merge the sorted relations, using 1 buffer for current input block of each relation:
 - skip tuples whose Y-value y not in both R and S
 - read blocks of both R and S for all tuples whose Y value is y
 - output all possible joins of the matching tuples r ∈ R and s ∈ S

Example: Join of R and S sorted on Y
Analysis of Sort-Based Two-Phase Join

- Consider \(R(X,Y) \bowtie_S (Y,Z) \) when \(B(R)=1000, \ B(S)=500, \) and \(M = 101 \)
 - Remember two-phase multiway merge sort:
 - each block read + written + read + written once
 - \(4 \times (B(R) + B(S)) = 6000 \) disk I/Os
 - Merge of sorted relations for the join:
 - \(B(R) + B(S) = 1500 \) disk I/Os
 - Total I/O cost = \(4 \times (B(R) + B(S)) = 7500 \)
- Seems big, but for large \(R \) and \(S \) much better than \(B(R)B(S)/M \) of block-based nested loop join

Two-Phase Join with Hashing

- Idea: If relations do not fit in memory, first hash the tuples of each relation in buckets. Then join tuples in each pair of buckets.
- For a join on attributes \(Y \), use \(Y \) as the hash key
 - **Hash Phase**: For each relation \(R \) and \(S \):
 - Use 1 input buffer, and \(M-1 \) output buffers as hash buckets
 - Read each block and hash its tuples; When output buffer gets full, write it on disk as the next block of that bucket

Hash-Join: The Join Phase

- For each \(i = 1, ..., M-1 \), perform one-pass join between buckets \(R_i \) and \(S_i \)
 - the smaller one has to fit in \(M-1 \) main memory buffers
- Average size for bucket \(R_i \) is approx. \(B(R)/M \), and \(B(S)/M \) for bucket \(S_i \)
- \(\text{Approximated memory requirement} \quad \min(B(R), B(S)) < M^2 \)

Cost of Hash-Join

- Consider \(R(X,Y) \bowtie_S (Y,Z) \) when \(B(R)=1000, \ B(S)=500, \) and \(M = 101 \)
- Hashing \(\rightarrow \) 100 buckets for both \(R \) and \(S \), with avg sizes 1000/100=10 and 500/100=5
- I/O cost 4500 blocks:
 - hashing phase 2x1000 + 2x500 = 3000 blocks
 - join phase: 1000 + 500 (in total for the 100 one-pass joins)
- In general: \(\text{cost} = 3(B(R) + B(S)) \)
Index-Based Join

- Still consider \(R(X,Y) \bowtie S(Y,Z) \)
- Assume there’s an index on \(S.Y \)
- Can compute the join by
 - reading each tuple of \(R \)
 - locating matching tuples of \(S \) by index-lookup for \(t.Y \), and
 - outputting their join with tuple \(t \)
- Efficiency depends on many factors

Cost of Index-Based Join

- Cost of scanning \(R \):
 - \(B(R) \), if clustered; \(T(R) \), if not
- On the average, \(T(S)/V(S,Y) \) matching tuples found by index lookup; Cost of loading them (total for all tuples of \(R \)):
 - \(T(R)T(S)/V(S,Y) \), if index not clustered
 - \(T(R)B(S)/V(S,Y) \), if index clustered
- Cost of loading tuples of \(S \) dominates

Example: Cost of Index-Join

- Again \(R(X,Y) \bowtie S(Y,Z) \) with \(B(R)=1000, B(S)=500; T(R) = 10,000, T(S) = 5000, and V(S,Y) = 100 \)
- Assume \(R \) clustered, and the index on \(S.Y \) is clustering
 \(\Rightarrow \) I/O cost \(1000 + 10,000 \times 500/100 = 51,000 \) blocks
- Often not this bad…

Index-Join useful …

… when \(|R| \ll |S| \), and \(V(S,Y) \) large (i.e., the index on \(S.Y \) is selective)

- For example, if \(Y \) primary key of \(S \):
 - each of the \(T(R) \) index lookups locates at most one record of relation \(S \)
 \(\Rightarrow \) at most \(T(R) \) input operations to load blocks of \(S \)
 \(\Rightarrow \) Total cost only
 - \(B(R) + T(R) \), if \(R \) clustered, and
 - \(T(R) + T(R) = 2T(R) \), if \(R \) not clustered

Joins Using a Sorted Index [Book: 6.7.4]

- Still consider \(R(X,Y) \bowtie S(Y,Z) \)
- Assume there’s a sorted index on both \(R.Y \) and \(S.Y \)
 - B-tree or a sorted sequential index
- Scan both indexes in the increasing order of \(Y \)
 - like merge-join, without need to sort first
 - if index dense, can skip nonmatching tuples without loading them
 - very efficient
- Details to exercises?

Summary - Query Processing

- Overall picture:
 - Query -> logical plan -> physical plan -> execution
- Physical operators
 - to implement physical query plans
 - selections, joins
 - one-pass, two-pass, (multi-pass)
 - based on scanning, sorting, hashing, existing indexes
- Next: More about query compilation (Chapter 7)