Analytic Methods in Algorithm Research

Overview

This lecture

Computer Science as research field

Central topics and results of algorithm research

Analytic-deductive methods

Next lecture

Experimental methods in algorithmics

Analytic Methods in Algorithm Research

Analytic-deductive methods

Central topics and results of algorithm research

Computer Science as research field

Overview
Algorithmic correctness

Algorithm:

- **Exact (and hopefully clear) formalizing:**

 - Researcher shall bring order among knowledge!

Analytic methods of algorithmics – p. 9/26

QuickSort

- **Procedure**

  ```
  procedure QuickSort(S):
  if |S| ≤ 1 then return S;
  else choose a pivot item s ∈ S;
  partition S into S< and S> = s
  return QuickSort(S<) ◦ s ◦ QuickSort(S>);
  endif;
  ```

Correctness

Theorem

Procedure QuickSort works correctly.

Proof

Induction on the number of items

Method

1: Exact (and hopefully clear) formalizing.

2: Modeling; just the essential features

3: Mathematical induction:

1◦ \(P(k) \)

2◦ \(P(k), P(k+1), \ldots, P(n-1) \) \(⇒\) \(P(n) \)

∴ \(P(n) \) for all \(n \geq k \)

Algorithmic Efficiency

- **Amount of required resources (time, memory, ...) with inputs of given size?**
- **As dependency from input size \((n)\)**
- **Simplifications:**
 - concentrate on “large enough” inputs \((n → ∞; n ≥ n_0)\)
 - ignore variable effects of programmer capability and execution environment, by analyzing how number of “basic operations” increase → focus on the scalability of algorithms

Asymptotic Complexity Class estimates

Upper bound

\(T(n) = O(f(n)) \), if \(T(n) ≤ cf(n) \) for all (sufficiently large) \(n \) and some \(c > 0 \)

Lower bound

\(T(n) = Ω(f(n)) \) and exact \(T(n) = Θ(f(n)) \) estimates similarly

Immediate simplifications

- \(c \times f(n) = O(f(n)) \), if \(\lim_{n → ∞} g(n)/f(n) = 0 \), then \(f(n) ± g(n) = Θ(f(n)) \) (ignore lower-order terms)

Algorithmic correctness

Correspondence

Induction for QuickSort correctness

Theorem: Procedure QuickSort works correctly.

Proof

Induction on the number of items

Example: Corollary.

The sorting problem arises from an instance of the problem in linear time.

Algorithmic correctness

- The sorting problem arises from an instance of the problem in linear time.
Approximating sum by an integral

AVG complexity of QuickSort (1)

\[
\sum_{k=1}^{n} \frac{k}{n^2} = \frac{1}{2} \left(\frac{1}{n} \right) + \frac{1}{2} \left(\frac{1}{n^2} \right)
\]

AVG complexity of QuickSort (2)

\[
\sum_{k=1}^{n} \frac{k}{n^2} = \frac{1}{2} \left(\frac{1}{n} \right) + \frac{1}{2} \left(\frac{1}{n^2} \right)
\]

Worst case of QuickSort

On the average, QuickSort works much better (See next)

Method 4: Combinatorial Observation

\[
(\forall n)\big((n) \big)_0 = (n) \big((n) \big)_0 \leftarrow (n) \big((n) \big)_0 \leftarrow \left((n) \big((n) \big)_0 \right)
\]

Worst case of QuickSort (3)

- Good / bad of worst-case analysis:
 - \((n) \big((n) \big)_0 = (n) \big((n) \big)_0 \)

Method 3: Algebraic Manipulation

\[
(\forall n) 0 = (0) \big((0) \big)_0 \leftarrow (n) \big((n) \big)_0 \leftarrow \left((n) \big((n) \big)_0 \right)
\]

Theorem for Direct

\[
(\forall n) \big((n) \big)_0 = (n) \big((n) \big)_0 \leftarrow (n) \big((n) \big)_0 \leftarrow \left((n) \big((n) \big)_0 \right)
\]
QuickSort in practice

Logarithms grow slowly ⇝ an algorithm with complexity $O(n \log n)$ scales almost as well as a linear one.

QuickSort is one of the most popular sorting methods of practice, for example for its friendliness wrt virtual memory.

Other points of interest: implementability, usability, applicability, validity of analytic results, actual performance, etc.

Methods are analytic-deductive, mathematical, or empirical.
- efficiency
- the correctness
- the complexity
- algorithms

Results of theoretical algorithm research -- Experimental Research of Algorithms
- Summary

Analytic methods of algorithmics -- p. 25/26

Experimental methods of algorithmics -- p. 26/26