A Clustering Algorithm for Logfile Data Sets

Risto Vaarandi

Department of Computer Engineering
Tallinn Technical University
Raja 15, Tallinn, Estonia
risto.vaarandi@eyp.ee

Abstract. Today, vast amounts of system status and health information are
stored in logfiles. Therefore, mining patterns from logfiles is an important
system management task. This paper presents a novel clustering algorithm for
logfile data sets which helps one to detect frequent patterns from logfiles, to
build logfile models, and to identify anomalous logfile lines.

1 Introduction

System monitoring - surveillance of the system for possible faults and malfunctions -
is an important part of system management. When appropriate monitoring techniques
are applied to system components, most of the system faults and malfunctions are
detected early, before they will escalate to more serious problems.

One of the most important monitoring techniques is the logfile monitoring. Today,
almost every application, service, operating system, network device, or other system
component is able to produce a comprehensible logfile where all relevant events
concerning the system component are logged. The notion of relevance is domain-
dependent, but as a general rule, all fault conditions are considered relevant and
logged. Therefore, logfiles are an excellent source for determining the health status of
the system.

Because of the importance of logfiles as the source of system health information, a
number of tools have been developed for monitoring logfiles, e.g., Swatch [1],
Logsurfer [2], SEC [3], etc. Since normally events are logged as single-line textual
messages, a typical logfile monitoring tool is a script or program that inspects every
line added to the logfile, by comparing the line with patterns from the database of
Jault message patterns. If a pattern (or several patterns) match the line, the logfile
monitor executes a certain action (e.g., sends an SMS-message to the mobile phone of
the system administrator). Most often, the system administrators rely on their past
experience and create the pattern databases by hand, by writing down patterns for all
fault message types that are known to them. This commonly used approach has one
serious flaw - only those faults that are already known to the system administrator
can be detected. If a previously unknown fault condition occurs, the logfile monitor
simply ignores the corresponding message in the logfile, since there is no match for it
in the pattern database.

In order to solve this problem, the following model-based approach can be
employed. First, the system administrator creates the database of fault message

A Clustering Algorithm for Logfile Data Sets 153

patterns as usual. Then the system administrator tries to identify all logfile lines that
do not represent fault conditions but rather reflect normal system activity, e.g.,
messages about successful completion of transactions. Once such lines have been
identified (if there are any), the system administrator creates the database of normal
message patterns that match those lines. Those two pattern databases constitute the
model of the logfile. If a message is logged that does not fit the model, i.c., it does not
represent any known fault or normal system activity, the message can be regarded as
anomalous and directed to further processing.

However, the model-based approach works well only if the system administrator
has created a good model for the logfile. For example, if the database of normal
message patterns is not precise or is incomplete, many false alarms could be
produced. Furthermore, if the logfile is larger and contains a wide variety of
messages, the task of creating the model for it by hand can be extremely tedious,
time-consuming, and error-prone. Thus, it is essential to have methods and tools for
automating the model creation. Unfortunately, relatively little work has been done in
this particular area, and currently no such open source tools are available.

One appealing choice for solving this problem is the employment of data clustering
algorithms. Clustering algorithms aim at dividing the set of objects into groups, where
objects in each group (or cluster) are similar to each other (and as dissimilar as
possible to objects from other groups). When logfile lines are viewed as objects,
clustering algorithms are a natural choice, because line patterns form natural clusters -
lines that match a certain pattern are all similar to each other, and generally dissimilar
to lines that match other patterns. If such natural clusters could be detected with a
software tool, it would greatly alleviate the problem of logfile model generation.

It should be noted that not all logfiles need to be analyzed with such a tool. If the
file is small, or if only a few different messages are logged into the logfile, the model
for it can be created manually with a little effort. Therefore, this paper focuses on the
logfiles that are larger, and contain a large number of different messages.

In this paper, the author proposes a new clustering algorithm for mining patterns
from logfiles, and presents an experimental clustering tool called SLCT (Simple
Logfile Clustering Tool). The rest of this paper is organized as follows: section 2
discusses related work on data clustering, section 3 presents a new clustering
algorithm for logfile data sets, section 4 describes SLCT, and section 5 concludes the

paper.

2 Related work on data clustering

Clustering methods have been researched extensively over the past decades, and
many algorithms have been developed [4]. The clustering problem is often defined as
follows: given a set of points with # attributes in the data space R”, find a partition of
points into clusters so that points within each cluster are close (similar) to each other.
In order to determine, how close (similar) two points x and y are to each other, a
distance function d(x, y) is employed. Many algorithms use a certain variant of L,
norm (p = 1, 2, ...) for the distance function:

154 Risto Vaarandi

dp(x7y) :—‘p,2|xi _yi|p :
i=1

Today, there are two major challenges for traditional clustering methods, that were
originally designed for clustering numerical data in low-dimensional spaces (where
usually » is well below 10). Firstly, quite many data sets consist of points with
categorical attributes, where the domain of an attribute is a finite and unordered set of
values [5, 6]. As an example, consider a categorical data set with attributes car-
manufacturer, model, type, and color, and data points (‘Honda', 'Civic', 'hatchback',
'green'’) and ('Ford', 'Focus', 'sedan’, 'red'). Also, it is quite common for categorical
data that different points can have different number of attributes. Therefore, it is not
obvious how to measure the distance between data points. Though several popular
distance functions for categorical data exist (such as the Jaccard coefficient [5]), the
choice of the right function is often not an easy task. Note that logfile lines can be
viewed as points from a categorical data set, since each line can be divided into
words, with the n-th word serving as a value for the n-th attribute. For example, the
logfile line Connection from 192.168.1.1 could be represented by the data point
(‘Connection', 'from', '192.168.1.1"). We will use this representation of logfile data in
the rest of this paper.

Secondly, quite many data sets today are high-dimensional, where data points can
easily have tens of attributes. Unfortunately, traditional clustering methods have been
found not to work well when they are applied to high-dimensional data. As the
number of dimensions » increases, it is often the case that for every pair of points
there exist dimensions where these points are far apart from each other, which makes
the detection of any clusters almost impossible (according to some sources, this
problem starts to be severe when n > 15) [4, 7, 8]. Furthermore, traditional clustering
methods are often unable to detect natural clusters that exist in subspaces of the
original high-dimensional space [7, 8]. For instance, data points (1333, 1, 1, 99, 25,
2033, 1044), (12, 1, 1, 724, 667, 36, 2307), and (501, 1, 1, 1822, 1749, 808, 9838) are
not seen as a cluster by many traditional methods, since in the original data space they
are not very close to each other. On the other hand, they form a very dense cluster in
the second and third dimension of the space.

The dimensionality problems described above are also relevant to the clustering of
logfile data, since logfile data is typically high-dimensional (i.c., there are usually
more than just 3-4 words on every line), and most of the line patterns correspond to
clusters in subspaces. For example, the lines

log: connection from 192.168.1.1

log: RSA key generation complete

log: Password authentication for john accepted.
form a natural cluster in the first dimension of the data space, and correspond to the
line pattern | 0og: *.

During past few years, several algorithms have been developed for clustering high-
dimensional data, like CLIQUE, MAFIA, CACTUS, and PROCLUS. The CLIQUE
[7] and MAFIA [9] algorithms closely remind the Apriori algorithm for mining
frequent itemsets [10]: they start with identifying all clusters in 1-dimensional
subspaces, and after they have identified clusters Ci,...,C, in (k-1)-dimensional

A Clustering Algorithm for Logfile Data Sets 155

subspaces, they form cluster candidates for k-dimensional subspaces from C,,...,C,,
and then check which of those candidates are actual clusters. Those algorithms are
effective in discovering clusters in subspaces, because they do not attempt to measure
distance between individual points, which is often meaningless in a high-dimensional
data space. Instead, their approach is density based, where a clustering algorithm tries
to identify dense regions in the data space, and forms clusters from those regions.
Unfortunately, the CLIQUE and MAFIA algorithms suffer from the fact that Apriori-
like candidate generation and testing involves exponential complexity and high
runtime overhead [11, 12, 13]. The CACTUS algorithm [6] first makes a pass over the
data and builds a data summary, then generates cluster candidates during the second
pass using the data summary, and finally determines the set of actual clusters.
Although CACTUS makes only two passes over the data and is therefore fast, it tends
to generate clusters with stretched shapes, which is undesirable if one wants to
discover patterns from logfiles. The PROCLUS algorithm [8] uses the K-medoid
method [4] for detecting K clusters in subspaces of the original space. However, in
the case of logfile data the number of clusters can rarely be predicted accurately, and
therefore it is not obvious what is the right value for K.

Though several clustering algorithms exist for high-dimensional data spaces, they
are not very suitable for clustering logfile lines, largely because they don't take into
account the nature of logfile data. In the next section, we will first discuss the
properties of logfile data, and then we will present a fast clustering algorithm that
relies on these properties.

3 Clustering logfile data
3.1 The nature of logfile data

The nature of the data to be clustered plays a key role when choosing the right
algorithm for clustering. Most of the clustering algorithms have been designed for
generic data sets such as market basket data, where no specific assumptions about the
nature of data are made. However, when we inspect the content of typical logfiles at
the word level, there are two important properties that distinguish logfile data from a
generic data set.

Firstly, most of the words occur only a few times in the data set. Table 1 presents
the results of an experiment for estimating the occurrence times of words in logfile
data.

156 Risto Vaarandi

Table 1. Occurrence times of words in logfile data

Data set| Data set | Total # of | # of words | # of words | # of words | # of words | # of words | # of words
size different | occur-ring | occur-ring | occur-ring | occur-ring |occur-ring| occur-ring
words once 2 times or | 3 times or | 5 times or |10 times or|20 times or|
less less less less less
Mail- 1025.3MB | 1,700,840848,033 1,350,581 1,404,748 (1,443,159 (1,472,296 |1,493,160
server (7,657,148 (49.9%) [(79.4%) (82.6%) ((84.8%) ((86.6%) |(87.8%)
logfile [lines
(Linux)
Cache |1088.9MB | 1,887,780/1,023,029 1,250,697 (1,359,535 |1,456,489 |1,568,165 1,695,336
server [8,189,780 (54.2%) [(66.3%) (72.0%) (77.2%) (83.1%) |(89.8%)
logfile [lines
(Linux)
IAuthentic|1043.9MB | 4,016,0093,948,414 (3,949,773 3,950,439 3,951,492 3,953,698 [3,956,850
lation 4,891,883 (98.3%) |(98.4%) (98.4%) (98.4%) ((98.5%) |(98.5%)
server |[lines
logfile
(Win
2000)

The results show that a majority of words are very infrequent, and a significant
fraction of words appear just once in the data set. The similar phenomenon has been
observed for World Wide Web data, where during an experiment nearly 50% of the
words were found to occur once only [14].

The second important property of logfile data is that there are many strong
correlations between words that occur frequently. This is not surprising, since before
logging, a message is generally formatted according to a certain format string, where
parts of the format string are constants, ¢.g.,

sprintf(message, "Connection from %s port %d", ipaddress, portnumber);

When messages of the same type are logged many times, there will also be many
lines in the data set which contain all of the constant parts of the format string
together. In the next subsection we will present a clustering algorithm that relies on
the special properties of logfile data.

3.2 The clustering algorithm

Our aim was to design an algorithm which would be fast and make only a few passes
over the data, and which would detect clusters that are present in subspaces of the
original data space. The algorithm relies on the special properties of logfile data, and
uses the density based approach for clustering. Points that do not belong to any of the
detected clusters are considered to form a special cluster of outliers.

The data space is assumed to contain data points with categorical attributes, where
each point represents a line from a logfile data set. The attributes of each data point
are the words from the corresponding logfile line. The data space has » dimensions,
where 7 is the maximum number of words per line in the data set. A region S is a
subset of the data space, where certain attributes ij....,ix (1 <k < n) of all points that

A Clustering Algorithm for Logfile Data Sets 157

belong to S have identical values vy,...,vi: VX € S, Xij = vy, ..., Xi, = V. We call the set
{(@1,v1),....(x, Vi) } the set of fixed attributes of region S. If k=1 (i.e., there is just one
fixed attribute), the region is called /-region. A dense region is a region that contains
at least N points, where N is the support threshold value given by the user.

The algorithm consists of three steps, and is somewhat similar to the CACTUS
algorithm [6] — it first makes a pass over the data and builds a data summary, and then
makes another pass to build cluster candidates, using the summary information
collected before. As a final step, clusters are selected from the set of candidates.

During the first step of the algorithm (data summarization), the algorithm identifies
all dense 1-regions. Note that this task is equivalent to the mining of firequent words
from the data set (the word position in the line is taken into account during the
mining). A word is considered frequent if it occurs at least N times in the data set,
where N is the user-specified support threshold value.

After dense 1-regions (frequent words) have been identified, the algorithm builds
all cluster candidates during one pass. The cluster candidates are kept in the candidate
table which is initially empty. The data set is processed line by line, and when a line is
found to belong to one or more dense 1-regions (i.¢., one or more frequent words have
been discovered on the line), a cluster candidate is formed. If the cluster candidate is
not present in the candidate table, it will be inserted into the table with a support value
1, otherwise its support value will be incremented. In both cases, the line is assigned
to the cluster candidate. The cluster candidate is formed in the following way: if the
line belongs to m dense 1-regions that have fixed attributes (i;,vy)....,(in, Vi), then the
cluster candidate is a region with the set of fixed attributes {(i;,vy),...,(in,Vm)}. For
example, if the line is Connection from 192.168.1.1, and there exist a dense 1-region
with the fixed attribute (1, 'Connection') and another dense 1-region with the fixed
attribute (2, 'from'), then a region with the set of fixed attributes {(1, 'Connection'), (2,
'from") } becomes the cluster candidate.

During the final step of the algorithm, the candidate table is inspected, and all
regions with support values equal or greater than the support threshold value (i.e.,
regions that are guaranteed to be dense) are reported by the algorithm as clusters.
Because of the definition of a region, each cluster corresponds to a certain line
pattern, e.g., the cluster with the set of fixed attributes {(1, "Password'), (2,
‘authentication'), (3, 'for"), (5, 'accepted')} corresponds to the line pattern Passwor d
aut hentication for * accept ed. Thus, the algorithm can report clusters in
a concise way by just printing out line patterns, without reporting individual lines that
belong to each cluster. The CLIQUE algorithm reports clusters in a similar manner
[7].

The first step of the algorithm reminds very closely the popular Apriori algorithm
for mining frequent itemsets [10], since frequent words can be viewed as frequent 1-
itemsets. Then, however, our algorithm takes a rather different approach, generating
all cluster candidates at once. There are several reasons for that. Firstly, Apriori
algorithm is expensive in terms of runtime [11, 12, 13], since the candidate generation
and testing involves exponential complexity. Secondly, since one of the properties of
logfile data is that there are many strong correlations between frequent words, it
makes very little sense to test a potentially huge number of frequent word
combinations that are generated by Apriori, while only a relatively small number of
combinations are present in the data set. It is much more reasonable to identify the

158 Risto Vaarandi

existing combinations during a single pass over the data, and verify after the pass
which of them correspond to clusters.

Note that the presence of many strong correlations between frequent words also
means that if candidates are generated at once, their number is not likely to be very
large, and is often not much larger than the number of frequent words itself (unless
the user has given a rather low support threshold value). Therefore, the candidates are
very likely to fit into the main memory. However, the memory cost of the algorithm is
still an important issue, and in the next subsection we will discuss this matter in more
detail.

3.3 The issue of memory cost

Although our algorithm makes just two passes over the data and is therefore fast,
there is still one problem which might hinder its use — under certain circumstances the
algorithm could consume a lot of memory.

In terms of memory cost, the most expensive part of the algorithm is the first step
when the data summary is built. During the data summarization, the algorithm seeks
for frequent words in the data set, by splitting each line into words. For each word, the
algorithm checks whether the word is present in the word table (or vocabulary), and if
it isn't, it will be inserted into the vocabulary with its occurrence counter set to 1. If
the word is present in the vocabulary, its occurrence counter will be incremented.

If the vocabulary is built for a large data set, it is likely to consume a lot of
memory. Table 2 presents an experiment for measuring the in-memory vocabulary
sizes for three data sets (each vocabulary was implemented as a move-to-front hash
table which is an efficient data structure for accumulating words [14]).

The results show that even for medium-size 1GB data sets, in-memory
vocabularies could occupy hundreds of megabytes of memory. As the size of the data
set grows, the situation deteriorates further, and the vocabulary could not fit into the
main memory anymore.

Table 2. In-memory vocabulary sizes

Data set Size Total # of different The size of the
words vocabulary
Mailserver logfile (Linux) 1025.3MB, 7,657,148 lines 1,700,840 98MB|
Cache server logfile (Linux) [1088.9MB, 8,189,780 lines 1,887,780 153MB
IAuthentication server logfile [1043.9MB, 4,891,883 lines 4,016,009 214MB
(Win2000)

On the other hand, one of the properties of logfile data is that a majority of the
words are very infrequent. Therefore, storing those very infrequent words to memory
is a waste of space. Unfortunately, it is impossible to predict during the vocabulary
construction which words will finally be infrequent.

In order to cope with this problem, we use the following technique - we first
estimate which words need not to be stored in memory, and then create the
vocabulary without irrelevant words in it. Before the data pass is made for building

A Clustering Algorithm for Logfile Data Sets 159

the vocabulary, the algorithm makes an extra pass over the data and builds a word
summary vector. The word summary vector is made up of m counters (numbered
from 0 to m-1) with each counter initialized to zero. During the pass over the data, a
fast string hashing function is applied to each word. The function returns integer
values from O to m-1, and each time the value i is calculated for a word, the i-th
counter in the vector will be incremented. Since efficient string hashing functions are
uniform [15], i.e., the probability of an arbitrary string hashing to a given value i is
1/m, then each counter in the vector will correspond roughly to 7/ m words, where W
is the number of different words in the data set. If words wy,...,wy are all words that
hash to the value i, and the words wy,...,wy. occur t,....t, times, respectively, then the
value of the i-th counter in the vector equals to the sum t;+...+t;.

After the summary vector has been constructed, the algorithm starts building the
vocabulary, but only those words will be inserted into the vocabulary for which their
counter values are equal or greater than the support threshold given by the user.
Words that do not fulfill this criterion can't be frequent, because their occurrence
times are guaranteed to be below the support threshold.

Given that a majority of the words are very infrequent, this simple technique is
quite powerful. If the vector is large enough, a majority of the counters in the vector
will have very infrequent words associated with them, and therefore most of the
counter values will never cross the support threshold (unless a very low threshold
value has been specified). Table 3 presents an experiment for measuring the
effectiveness of the word summary vector technique for three data sets (each counter
in the vector consumed 4 bytes of memory).

The experiments suggest that the employment of the word summary vector
dramatically reduces vocabulary sizes, and large amounts of memory will be saved
(during the experiment, vocabulary sizes decreased 25-100 times). On the other hand,
the memory requirements for storing the vector itself are relatively small. For
example, the largest vector we used during the experiments occupied less than 400KB
of memory.

Table 3. The effectiveness of the summary vector technique

Data set Support Vector Total # of # of words in | Reduction
threshold size different words |the vocabulary| factor

Mailserver logfile (Linux) 1% (76,571) 5,000 1,700,840 40,935 41.54
Cache server logfile (Linux) 1% (81,897) 5,000 1,887,780 18,998 99.36
‘Authentication server logfile 1% (48,918) 5,000 4,016,009 118,208, 33.97
(Win2000)

Mailserver logfile (Linux) 0.1% (7,657) 20,000 1,700,840 61,244 27.77
Cache server logfile (Linux) 0.1% (8,189) 20,000 1,887,780 50,246 37.57
‘Authentication server logfile 0.1% (4,891) 20,000 4,016,009 73,376 54.73
(Win2000)

Mailserver logfile (Linux) 0.01% (765) 100,000 1,700,840 66,849 25.44
Cache server logfile (Linux) 0.01% (818) 100,000 1,887,780 69,210 27.27
‘Authentication server logfile 0.01% (489) 100,000 4,016,009 128,922 31.15
(Win2000)

If the user has specified a rather low support threshold value, there could be a large
number of cluster candidates with very low support values, and the candidate table

160 Risto Vaarandi

could consume a significant amount of memory. In order to avoid this, the summary
vector technique can also be applied to cluster candidates — before the candidate table
is built, the algorithm makes an extra pass over the data and builds a summary vector
for candidates, which is later used to reduce the number of candidates inserted into the
candidate table.

4 Simple Logfile Clustering Tool

In order to implement the logfile clustering algorithm described in the previous
section, an experimental tool called SLCT (Simple Logfile Clustering Tool) has been
developed. SLCT has been written in C and has been primarily used on Redhat 8.0
Linux, though it should compile and work on most modern UNIX platforms.

SLCT uses move-to-front hash tables for implementing the vocabulary and the
candidate table. Experiments with large vocabularies have demonstrated that move-
to-front hash table is an efficient data structure with very low data access times, even
when the hash table is full and many words are connected to each hash table slot [14].
The speed of the hashing function has a critical importance for the efficiency of the
hash table, because if a slower hashing function is used, the data access times can
increase by an unacceptable margin. In order to avoid this, SLCT uses the fast and
efficient Shift-Add-Xor string hashing algorithm [15]. This algorithm is not only used
for hash table operations, but also for building summary vectors.

SLCT is given a list of logfiles and a support threshold as input, and after it has
detected a clustering on input data, it reports clusters in a concise way by printing out
line patterns that correspond to clusters, e.g.,

Dec 18 * myhost.nydonain * connect from
Support: 570

Dec 18 * nyhost.nydomain * | og: Connection from?* port
Support: 570

Dec 18 * myhost.nydonain * | og:
Support: 679

The user can specify a command line flag that forces SLCT to inspect each cluster
candidate more closely, before it starts the search for clusters in the candidate table.
For each candidate C, SLCT checks whether there are other candidates in the table
that represent more specific line patterns. In the above example, the second pattern is
more specific than the third, since all lines that match the second pattern also match
the third. If candidates C,....,Cy representing more specific patterns are found for the
candidate C, the support values of the candidates C,,...,Cy are added to the support
value of C, and all lines that belong to candidates C;,...,Cy are also considered to
belong to the candidate C. In that way, a line can belong to more than one cluster
simultaneously, and more general line patterns are always reported, even when their
original support values were below the threshold. Although traditional clustering
algorithms require that every point must be part of one cluster only, there are several
algorithms like CLIQUE which do not follow this requirement, in order to achieve

A Clustering Algorithm for Logfile Data Sets 161

clustering results that are more comprehensible to the end user [7].

By default, SLCT does not report the points that do not belong to any of the
detected clusters. Though outlier points are considered to form a special cluster, there
is no concise description for this cluster, since it does not correspond to any line
pattern. As SLCT processes the data set, each detected outlier point could be stored to
memory, but this could be way too expensive in terms of memory cost - especially
when a relatively high support threshold value has been specified by the end user,
which tends to create few clusters and many outliers. Therefore, SLCT does not
discover outliers by default. If the end user has specified a certain command line flag,
SLCT makes another pass over the data after clusters have been detected, and writes
all outlier points to a file. Note that when there are many outlier points, one can apply
SLCT to the file of outliers (and possibly repeat this process iteratively for every new
outlier file).

We have made many experiments with SLCT, and it has proved to be a useful tool
for building logfile models and detecting interesting patterns from logfiles. Table 4
presents the results of some our experiments for measuring the runtime and memory
consumption of SLCT. The experiments were conducted on 1,5GHz Pentium4
workstation with 256MB of memory and Redhat 8.0 Linux as operating system. For
all data clustering tasks, a word summary vector of size 5000 was used. Since SLCT
was also instructed to identify outlier points, four passes over the data were made
altogether.

Table 4. Runtime and memory consumption of SLCT

Data set Support #of # of outlier| Memory Runtime
threshold detected points consumption
clusters

Mailserver logfile (Linux) 10% (765,714) 17 318,166/1252 KB [7min 17sec
Mailserver logfile (Linux) 5% (382,857) 20 318,166/1372 KB 7min 17sec
Mailserver logfile (Linux) 1% (76,571) 89 42,3462780 KB [7min 38sec
Mailserver logfile (Linux) 0.5% (38,285) 181 41,3654260 KB [7min 54sec
Cache server logfile (Linux) 10% (818,978) 16 01352 KB 10min 35sec
Cache server logfile (Linux) 5% (409,489) 32 01668 KB 10min 35sec
Cache server logfile (Linux) 1% (81,897) 90 112580 KB 10min 56sec
Cache server logfile (Linux) 0.5% (40,948) 133 83512 KB 10min 56sec
‘Authentication server logfile 10% (489,188) 22 1,2563596 KB 11min 11sec
(Win2000)
‘Authentication server logfile 5% (244,594) 34 1,2565112 KB 11min 38sec
(Win2000)
‘Authentication server logfile 1% (48,918) 46 1,2567348 KB 11min 58sec
(Win2000)
‘Authentication server logfile 0.5% (24,459) 65 3,3889132 KB 11min 54sec
(Win2000)

The results show that our algorithm has modest memory requirements, and finds
many clusters from large logfiles in a relatively short amount of time. We also made
some tests with CLIQUE algorithm, in order to measure the difference of the two
algorithms in terms of runtime. Even for medium support threshold values (such as
10-20%), our algorithm was 5-10 times faster. As the support threshold value was
lowered, the difference increased even further.

162 Risto Vaarandi

5

Future work and availability information

For a future work, we plan to investigate various association rule algorithms, in order
to create an algorithm for detecting patterns that span over multiple logfile lines and
fit into a certain time window. SLCT is distributed under the terms of GNU GPL, and
is available at http://kodu.neti.ee/~risto/slct/.

References

1.

10.

1

—

12.

13.

14.

15.

Stephen E. Hansen and E. Todd Atkins. Automated System Monitoring and Notification
With Swatch. Proceedings of the USENIX 7™ System Administration Conference, pp. 145-
155, 1993.

Wolfgang Ley and Uwe Ellerman. logsurfer(l) and logsurfer.conf(4) manual pages.
http://www.cert.dfn.de/eng/logsurt/, 1995.

Risto Vaarandi. Platform Independent Tool for Local Event Correlation. Acta Cybernetica
15(4), pp. 705-723, 2002.

Pavel Berkhin. Survey of Clustering Data Mining Techniques.
http://citeseer.nj.nec.com/berkhin02survey.html, 2002.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A Robust Clustering Algorithm
for Categorical Attributes. Information Systems 25(5), pp. 345-366, 2000.

Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. CACTUS - Clustering
Categorical Data Using Summaries. Proceedings of the 5™ ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 73-83, 1999.

Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan.
Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications.
Proceedings of the ACM SIGMOD International Conference on Management of Data, pp.
94-105, 1998.

Charu C. Aggarwal, Cecilia Procopiuc, Joel L. Wolf, Philip S. Yu, and Jong Soo Park. Fast
Algorithms for Projected Clustering. Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 61-72, 1999.

Sanjay Goil, Harsha Nagesh, and Alok Choudhary. MAFIA: Efficient and Scalable
Subspace Clustering for Very Large Data Sets. Technical Report No. CPDC-TR-9906-010,
Northwestern University, 1999.

Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules.
Proceedings of the 20" International Conference on Very Large Data Bases, pp. 487-499,
1994.

. Roberto J. Bayardo Jr., Rakesh Agrawal, and Dimitrios Gunopulos. Constraint-Based Rule

Mining in Large, Dense Databases. Proceedings of the 15% International Conference on
Data Engineering, pp. 188-197, 1999.

Roberto J. Bayardo Jr. Efficiently Mining Long Patterns from Databases. Proceedings of
the ACM SIGMOD International Conference on Management of Data, pp. 85-93, 1998.
Jiawei Han, Jian Pei, and Yiwen Yin. Mining Frequent Patterns without Candidate
Generation. Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 1-12, 2000.

Justin Zobel, Steffen Heinz, and Hugh E. Williams. In-memory Hash Tables for
Accumulating Text Vocabularies. Information Processing Letters, 80(6), pp. 271-277, 2001.
M. V. Ramakrishna and Justin Zobel. Performance in Practice of String Hashing
Functions. Proceedings of the 5™ International Conference on Database Systems for
Advanced Applications, pp. 215-224, 1997.

